1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 1;
120 #else
121 2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)125 static inline bool arch_faults_on_old_pte(void)
126 {
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139 /*
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
143 */
144 return false;
145 }
146 #endif
147
disable_randmaps(char * s)148 static int __init disable_randmaps(char *s)
149 {
150 randomize_va_space = 0;
151 return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162 */
init_zero_pfn(void)163 static int __init init_zero_pfn(void)
164 {
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 return 0;
167 }
168 early_initcall(init_zero_pfn);
169
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172 trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
sync_mm_rss(struct mm_struct * mm)177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
185 }
186 }
187 current->rss_stat.events = 0;
188 }
189
add_mm_counter_fast(struct mm_struct * mm,int member,int val)190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
check_sync_rss_stat(struct task_struct * task)216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
228 {
229 pgtable_t token = pmd_pgtable(*pmd);
230 pmd_clear(pmd);
231 pte_free_tlb(tlb, token, addr);
232 mm_dec_nr_ptes(tlb->mm);
233 }
234
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
238 {
239 pmd_t *pmd;
240 unsigned long next;
241 unsigned long start;
242
243 start = addr;
244 pmd = pmd_offset(pud, addr);
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
249 free_pte_range(tlb, pmd, addr);
250 } while (pmd++, addr = next, addr != end);
251
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
259 }
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
265 pmd_free_tlb(tlb, pmd, start);
266 mm_dec_nr_pmds(tlb->mm);
267 }
268
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
272 {
273 pud_t *pud;
274 unsigned long next;
275 unsigned long start;
276
277 start = addr;
278 pud = pud_offset(p4d, addr);
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 } while (pud++, addr = next, addr != end);
285
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
300 mm_dec_nr_puds(tlb->mm);
301 }
302
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
327 }
328 if (end - 1 > ceiling - 1)
329 return;
330
331 p4d = p4d_offset(pgd, start);
332 pgd_clear(pgd);
333 p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337 * This function frees user-level page tables of a process.
338 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)339 void free_pgd_range(struct mmu_gather *tlb,
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
342 {
343 pgd_t *pgd;
344 unsigned long next;
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
371
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
391 tlb_change_page_size(tlb, PAGE_SIZE);
392 pgd = pgd_offset(tlb->mm, addr);
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 } while (pgd++, addr = next, addr != end);
399 }
400
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 unsigned long floor, unsigned long ceiling)
403 {
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
408 /*
409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
411 */
412 unlink_anon_vmas(vma);
413 unlink_file_vma(vma);
414
415 if (is_vm_hugetlb_page(vma)) {
416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 && !is_vm_hugetlb_page(next)) {
424 vma = next;
425 next = vma->vm_next;
426 unlink_anon_vmas(vma);
427 unlink_file_vma(vma);
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
430 floor, next ? next->vm_start : ceiling);
431 }
432 vma = next;
433 }
434 }
435
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 spinlock_t *ptl;
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458 ptl = pmd_lock(mm, pmd);
459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
460 mm_inc_nr_ptes(mm);
461 pmd_populate(mm, pmd, new);
462 new = NULL;
463 }
464 spin_unlock(ptl);
465 if (new)
466 pte_free(mm, new);
467 return 0;
468 }
469
__pte_alloc_kernel(pmd_t * pmd)470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472 pte_t *new = pte_alloc_one_kernel(&init_mm);
473 if (!new)
474 return -ENOMEM;
475
476 smp_wmb(); /* See comment in __pte_alloc */
477
478 spin_lock(&init_mm.page_table_lock);
479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
480 pmd_populate_kernel(&init_mm, pmd, new);
481 new = NULL;
482 }
483 spin_unlock(&init_mm.page_table_lock);
484 if (new)
485 pte_free_kernel(&init_mm, new);
486 return 0;
487 }
488
init_rss_vec(int * rss)489 static inline void init_rss_vec(int *rss)
490 {
491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
add_mm_rss_vec(struct mm_struct * mm,int * rss)494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496 int i;
497
498 if (current->mm == mm)
499 sync_mm_rss(mm);
500 for (i = 0; i < NR_MM_COUNTERS; i++)
501 if (rss[i])
502 add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506 * This function is called to print an error when a bad pte
507 * is found. For example, we might have a PFN-mapped pte in
508 * a region that doesn't allow it.
509 *
510 * The calling function must still handle the error.
511 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 pte_t pte, struct page *page)
514 {
515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516 p4d_t *p4d = p4d_offset(pgd, addr);
517 pud_t *pud = pud_offset(p4d, addr);
518 pmd_t *pmd = pmd_offset(pud, addr);
519 struct address_space *mapping;
520 pgoff_t index;
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 return;
533 }
534 if (nr_unshown) {
535 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 nr_unshown);
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
543
544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 index = linear_page_index(vma, addr);
546
547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
548 current->comm,
549 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550 if (page)
551 dump_page(page, "bad pte");
552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555 vma->vm_file,
556 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 mapping ? mapping->a_ops->readpage : NULL);
559 dump_stack();
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
565 *
566 * "Special" mappings do not wish to be associated with a "struct page" (either
567 * it doesn't exist, or it exists but they don't want to touch it). In this
568 * case, NULL is returned here. "Normal" mappings do have a struct page.
569 *
570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571 * pte bit, in which case this function is trivial. Secondly, an architecture
572 * may not have a spare pte bit, which requires a more complicated scheme,
573 * described below.
574 *
575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576 * special mapping (even if there are underlying and valid "struct pages").
577 * COWed pages of a VM_PFNMAP are always normal.
578 *
579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582 * mapping will always honor the rule
583 *
584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585 *
586 * And for normal mappings this is false.
587 *
588 * This restricts such mappings to be a linear translation from virtual address
589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
590 * as the vma is not a COW mapping; in that case, we know that all ptes are
591 * special (because none can have been COWed).
592 *
593 *
594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595 *
596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597 * page" backing, however the difference is that _all_ pages with a struct
598 * page (that is, those where pfn_valid is true) are refcounted and considered
599 * normal pages by the VM. The disadvantage is that pages are refcounted
600 * (which can be slower and simply not an option for some PFNMAP users). The
601 * advantage is that we don't have to follow the strict linearity rule of
602 * PFNMAP mappings in order to support COWable mappings.
603 *
604 */ ///只返回普通页面,特殊页不参与内存管理,比如回收等
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 pte_t pte)
607 {
608 unsigned long pfn = pte_pfn(pte);
609
610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { ///处理特殊页
611 if (likely(!pte_special(pte)))
612 goto check_pfn;
613 if (vma->vm_ops && vma->vm_ops->find_special_page)
614 return vma->vm_ops->find_special_page(vma, addr);
615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 return NULL;
617 if (is_zero_pfn(pfn)) ///零页,返回NULL
618 return NULL;
619 if (pte_devmap(pte))
620 return NULL;
621
622 print_bad_pte(vma, addr, pte, NULL);
623 return NULL;
624 }
625
626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 if (vma->vm_flags & VM_MIXEDMAP) {
630 if (!pfn_valid(pfn))
631 return NULL;
632 goto out;
633 } else {
634 unsigned long off;
635 off = (addr - vma->vm_start) >> PAGE_SHIFT;
636 if (pfn == vma->vm_pgoff + off)
637 return NULL;
638 if (!is_cow_mapping(vma->vm_flags))
639 return NULL;
640 }
641 }
642
643 if (is_zero_pfn(pfn))
644 return NULL;
645
646 check_pfn:
647 if (unlikely(pfn > highest_memmap_pfn)) {
648 print_bad_pte(vma, addr, pte, NULL);
649 return NULL;
650 }
651
652 /*
653 * NOTE! We still have PageReserved() pages in the page tables.
654 * eg. VDSO mappings can cause them to exist.
655 */
656 out:
657 return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 pmd_t pmd)
663 {
664 unsigned long pfn = pmd_pfn(pmd);
665
666 /*
667 * There is no pmd_special() but there may be special pmds, e.g.
668 * in a direct-access (dax) mapping, so let's just replicate the
669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670 */
671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 if (vma->vm_flags & VM_MIXEDMAP) {
673 if (!pfn_valid(pfn))
674 return NULL;
675 goto out;
676 } else {
677 unsigned long off;
678 off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 if (pfn == vma->vm_pgoff + off)
680 return NULL;
681 if (!is_cow_mapping(vma->vm_flags))
682 return NULL;
683 }
684 }
685
686 if (pmd_devmap(pmd))
687 return NULL;
688 if (is_huge_zero_pmd(pmd))
689 return NULL;
690 if (unlikely(pfn > highest_memmap_pfn))
691 return NULL;
692
693 /*
694 * NOTE! We still have PageReserved() pages in the page tables.
695 * eg. VDSO mappings can cause them to exist.
696 */
697 out:
698 return pfn_to_page(pfn);
699 }
700 #endif
701
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)702 static void restore_exclusive_pte(struct vm_area_struct *vma,
703 struct page *page, unsigned long address,
704 pte_t *ptep)
705 {
706 pte_t pte;
707 swp_entry_t entry;
708
709 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710 if (pte_swp_soft_dirty(*ptep))
711 pte = pte_mksoft_dirty(pte);
712
713 entry = pte_to_swp_entry(*ptep);
714 if (pte_swp_uffd_wp(*ptep))
715 pte = pte_mkuffd_wp(pte);
716 else if (is_writable_device_exclusive_entry(entry))
717 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718
719 set_pte_at(vma->vm_mm, address, ptep, pte);
720
721 /*
722 * No need to take a page reference as one was already
723 * created when the swap entry was made.
724 */
725 if (PageAnon(page))
726 page_add_anon_rmap(page, vma, address, false);
727 else
728 /*
729 * Currently device exclusive access only supports anonymous
730 * memory so the entry shouldn't point to a filebacked page.
731 */
732 WARN_ON_ONCE(!PageAnon(page));
733
734 if (vma->vm_flags & VM_LOCKED)
735 mlock_vma_page(page);
736
737 /*
738 * No need to invalidate - it was non-present before. However
739 * secondary CPUs may have mappings that need invalidating.
740 */
741 update_mmu_cache(vma, address, ptep);
742 }
743
744 /*
745 * Tries to restore an exclusive pte if the page lock can be acquired without
746 * sleeping.
747 */
748 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)749 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750 unsigned long addr)
751 {
752 swp_entry_t entry = pte_to_swp_entry(*src_pte);
753 struct page *page = pfn_swap_entry_to_page(entry);
754
755 if (trylock_page(page)) {
756 restore_exclusive_pte(vma, page, addr, src_pte);
757 unlock_page(page);
758 return 0;
759 }
760
761 return -EBUSY;
762 }
763
764 /*
765 * copy one vm_area from one task to the other. Assumes the page tables
766 * already present in the new task to be cleared in the whole range
767 * covered by this vma.
768 */
769
770 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)771 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
772 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
774 {
775 unsigned long vm_flags = dst_vma->vm_flags;
776 pte_t pte = *src_pte;
777 struct page *page;
778 swp_entry_t entry = pte_to_swp_entry(pte);
779
780 if (likely(!non_swap_entry(entry))) {
781 if (swap_duplicate(entry) < 0)
782 return -EIO;
783
784 /* make sure dst_mm is on swapoff's mmlist. */
785 if (unlikely(list_empty(&dst_mm->mmlist))) {
786 spin_lock(&mmlist_lock);
787 if (list_empty(&dst_mm->mmlist))
788 list_add(&dst_mm->mmlist,
789 &src_mm->mmlist);
790 spin_unlock(&mmlist_lock);
791 }
792 rss[MM_SWAPENTS]++;
793 } else if (is_migration_entry(entry)) {
794 page = pfn_swap_entry_to_page(entry);
795
796 rss[mm_counter(page)]++;
797
798 if (is_writable_migration_entry(entry) &&
799 is_cow_mapping(vm_flags)) {
800 /*
801 * COW mappings require pages in both
802 * parent and child to be set to read.
803 */
804 entry = make_readable_migration_entry(
805 swp_offset(entry));
806 pte = swp_entry_to_pte(entry);
807 if (pte_swp_soft_dirty(*src_pte))
808 pte = pte_swp_mksoft_dirty(pte);
809 if (pte_swp_uffd_wp(*src_pte))
810 pte = pte_swp_mkuffd_wp(pte);
811 set_pte_at(src_mm, addr, src_pte, pte);
812 }
813 } else if (is_device_private_entry(entry)) {
814 page = pfn_swap_entry_to_page(entry);
815
816 /*
817 * Update rss count even for unaddressable pages, as
818 * they should treated just like normal pages in this
819 * respect.
820 *
821 * We will likely want to have some new rss counters
822 * for unaddressable pages, at some point. But for now
823 * keep things as they are.
824 */
825 get_page(page);
826 rss[mm_counter(page)]++;
827 page_dup_rmap(page, false);
828
829 /*
830 * We do not preserve soft-dirty information, because so
831 * far, checkpoint/restore is the only feature that
832 * requires that. And checkpoint/restore does not work
833 * when a device driver is involved (you cannot easily
834 * save and restore device driver state).
835 */
836 if (is_writable_device_private_entry(entry) &&
837 is_cow_mapping(vm_flags)) {
838 entry = make_readable_device_private_entry(
839 swp_offset(entry));
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_uffd_wp(*src_pte))
842 pte = pte_swp_mkuffd_wp(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
844 }
845 } else if (is_device_exclusive_entry(entry)) {
846 /*
847 * Make device exclusive entries present by restoring the
848 * original entry then copying as for a present pte. Device
849 * exclusive entries currently only support private writable
850 * (ie. COW) mappings.
851 */
852 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854 return -EBUSY;
855 return -ENOENT;
856 }
857 if (!userfaultfd_wp(dst_vma))
858 pte = pte_swp_clear_uffd_wp(pte);
859 set_pte_at(dst_mm, addr, dst_pte, pte);
860 return 0;
861 }
862
863 /*
864 * Copy a present and normal page if necessary.
865 *
866 * NOTE! The usual case is that this doesn't need to do
867 * anything, and can just return a positive value. That
868 * will let the caller know that it can just increase
869 * the page refcount and re-use the pte the traditional
870 * way.
871 *
872 * But _if_ we need to copy it because it needs to be
873 * pinned in the parent (and the child should get its own
874 * copy rather than just a reference to the same page),
875 * we'll do that here and return zero to let the caller
876 * know we're done.
877 *
878 * And if we need a pre-allocated page but don't yet have
879 * one, return a negative error to let the preallocation
880 * code know so that it can do so outside the page table
881 * lock.
882 */
883 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)884 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886 struct page **prealloc, pte_t pte, struct page *page)
887 {
888 struct page *new_page;
889
890 /*
891 * What we want to do is to check whether this page may
892 * have been pinned by the parent process. If so,
893 * instead of wrprotect the pte on both sides, we copy
894 * the page immediately so that we'll always guarantee
895 * the pinned page won't be randomly replaced in the
896 * future.
897 *
898 * The page pinning checks are just "has this mm ever
899 * seen pinning", along with the (inexact) check of
900 * the page count. That might give false positives for
901 * for pinning, but it will work correctly.
902 */
903 if (likely(!page_needs_cow_for_dma(src_vma, page)))
904 return 1;
905
906 new_page = *prealloc;
907 if (!new_page)
908 return -EAGAIN;
909
910 /*
911 * We have a prealloc page, all good! Take it
912 * over and copy the page & arm it.
913 */
914 *prealloc = NULL;
915 copy_user_highpage(new_page, page, addr, src_vma);
916 __SetPageUptodate(new_page);
917 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
919 rss[mm_counter(new_page)]++;
920
921 /* All done, just insert the new page copy in the child */
922 pte = mk_pte(new_page, dst_vma->vm_page_prot);
923 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924 if (userfaultfd_pte_wp(dst_vma, *src_pte))
925 /* Uffd-wp needs to be delivered to dest pte as well */
926 pte = pte_wrprotect(pte_mkuffd_wp(pte));
927 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928 return 0;
929 }
930
931 /*
932 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
933 * is required to copy this pte.
934 */
935 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938 struct page **prealloc)
939 {
940 struct mm_struct *src_mm = src_vma->vm_mm;
941 unsigned long vm_flags = src_vma->vm_flags;
942 pte_t pte = *src_pte;
943 struct page *page;
944
945 page = vm_normal_page(src_vma, addr, pte);
946 if (page) {
947 int retval;
948
949 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, pte, page);
951 if (retval <= 0)
952 return retval;
953
954 get_page(page);
955 page_dup_rmap(page, false);
956 rss[mm_counter(page)]++;
957 }
958
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
963 ///如果是COW页,父进程,子进程页面都设置为只读
964 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965 ptep_set_wrprotect(src_mm, addr, src_pte);
966 pte = pte_wrprotect(pte);
967 }
968
969 /*
970 * If it's a shared mapping, mark it clean in
971 * the child
972 */
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
976
977 if (!userfaultfd_wp(dst_vma))
978 pte = pte_clear_uffd_wp(pte);
979
980 ///把PTE内容设置到子进程对应的dst_pte中
981 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
982 return 0;
983 }
984
985 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)986 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
987 unsigned long addr)
988 {
989 struct page *new_page;
990
991 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
992 if (!new_page)
993 return NULL;
994
995 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
996 put_page(new_page);
997 return NULL;
998 }
999 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1000
1001 return new_page;
1002 }
1003
1004 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1005 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1006 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1007 unsigned long end)
1008 {
1009 struct mm_struct *dst_mm = dst_vma->vm_mm;
1010 struct mm_struct *src_mm = src_vma->vm_mm;
1011 pte_t *orig_src_pte, *orig_dst_pte;
1012 pte_t *src_pte, *dst_pte;
1013 spinlock_t *src_ptl, *dst_ptl;
1014 int progress, ret = 0;
1015 int rss[NR_MM_COUNTERS];
1016 swp_entry_t entry = (swp_entry_t){0};
1017 struct page *prealloc = NULL;
1018
1019 again:
1020 progress = 0;
1021 init_rss_vec(rss);
1022
1023 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1024 if (!dst_pte) {
1025 ret = -ENOMEM;
1026 goto out;
1027 }
1028 src_pte = pte_offset_map(src_pmd, addr);
1029 src_ptl = pte_lockptr(src_mm, src_pmd);
1030 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1031 orig_src_pte = src_pte;
1032 orig_dst_pte = dst_pte;
1033 arch_enter_lazy_mmu_mode();
1034
1035 do {
1036 /*
1037 * We are holding two locks at this point - either of them
1038 * could generate latencies in another task on another CPU.
1039 */
1040 if (progress >= 32) {
1041 progress = 0;
1042 if (need_resched() ||
1043 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1044 break;
1045 }
1046 if (pte_none(*src_pte)) {
1047 progress++;
1048 continue;
1049 }
1050 ///判断父进程PTE是否在内存中
1051 if (unlikely(!pte_present(*src_pte))) {
1052 ret = copy_nonpresent_pte(dst_mm, src_mm,
1053 dst_pte, src_pte,
1054 dst_vma, src_vma,
1055 addr, rss);
1056 if (ret == -EIO) {
1057 entry = pte_to_swp_entry(*src_pte);
1058 break;
1059 } else if (ret == -EBUSY) {
1060 break;
1061 } else if (!ret) {
1062 progress += 8;
1063 continue;
1064 }
1065
1066 /*
1067 * Device exclusive entry restored, continue by copying
1068 * the now present pte.
1069 */
1070 WARN_ON_ONCE(ret != -ENOENT);
1071 }
1072 /* copy_present_pte() will clear `*prealloc' if consumed */
1073 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074 addr, rss, &prealloc);
1075 /*
1076 * If we need a pre-allocated page for this pte, drop the
1077 * locks, allocate, and try again.
1078 */
1079 if (unlikely(ret == -EAGAIN))
1080 break;
1081 if (unlikely(prealloc)) {
1082 /*
1083 * pre-alloc page cannot be reused by next time so as
1084 * to strictly follow mempolicy (e.g., alloc_page_vma()
1085 * will allocate page according to address). This
1086 * could only happen if one pinned pte changed.
1087 */
1088 put_page(prealloc);
1089 prealloc = NULL;
1090 }
1091 progress += 8;
1092 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1093
1094 arch_leave_lazy_mmu_mode();
1095 spin_unlock(src_ptl);
1096 pte_unmap(orig_src_pte);
1097 add_mm_rss_vec(dst_mm, rss);
1098 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1099 cond_resched();
1100
1101 if (ret == -EIO) {
1102 VM_WARN_ON_ONCE(!entry.val);
1103 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1104 ret = -ENOMEM;
1105 goto out;
1106 }
1107 entry.val = 0;
1108 } else if (ret == -EBUSY) {
1109 goto out;
1110 } else if (ret == -EAGAIN) {
1111 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1112 if (!prealloc)
1113 return -ENOMEM;
1114 } else if (ret) {
1115 VM_WARN_ON_ONCE(1);
1116 }
1117
1118 /* We've captured and resolved the error. Reset, try again. */
1119 ret = 0;
1120
1121 if (addr != end)
1122 goto again;
1123 out:
1124 if (unlikely(prealloc))
1125 put_page(prealloc);
1126 return ret;
1127 }
1128
1129 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1130 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132 unsigned long end)
1133 {
1134 struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 struct mm_struct *src_mm = src_vma->vm_mm;
1136 pmd_t *src_pmd, *dst_pmd;
1137 unsigned long next;
1138
1139 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140 if (!dst_pmd)
1141 return -ENOMEM;
1142 src_pmd = pmd_offset(src_pud, addr);
1143 do {
1144 next = pmd_addr_end(addr, end);
1145 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146 || pmd_devmap(*src_pmd)) {
1147 int err;
1148 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1149 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150 addr, dst_vma, src_vma);
1151 if (err == -ENOMEM)
1152 return -ENOMEM;
1153 if (!err)
1154 continue;
1155 /* fall through */
1156 }
1157 if (pmd_none_or_clear_bad(src_pmd))
1158 continue;
1159 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160 addr, next))
1161 return -ENOMEM;
1162 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1163 return 0;
1164 }
1165
1166 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1167 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169 unsigned long end)
1170 {
1171 struct mm_struct *dst_mm = dst_vma->vm_mm;
1172 struct mm_struct *src_mm = src_vma->vm_mm;
1173 pud_t *src_pud, *dst_pud;
1174 unsigned long next;
1175
1176 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1177 if (!dst_pud)
1178 return -ENOMEM;
1179 src_pud = pud_offset(src_p4d, addr);
1180 do {
1181 next = pud_addr_end(addr, end);
1182 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183 int err;
1184
1185 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1186 err = copy_huge_pud(dst_mm, src_mm,
1187 dst_pud, src_pud, addr, src_vma);
1188 if (err == -ENOMEM)
1189 return -ENOMEM;
1190 if (!err)
1191 continue;
1192 /* fall through */
1193 }
1194 if (pud_none_or_clear_bad(src_pud))
1195 continue;
1196 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197 addr, next))
1198 return -ENOMEM;
1199 } while (dst_pud++, src_pud++, addr = next, addr != end);
1200 return 0;
1201 }
1202
1203 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1204 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206 unsigned long end)
1207 {
1208 struct mm_struct *dst_mm = dst_vma->vm_mm;
1209 p4d_t *src_p4d, *dst_p4d;
1210 unsigned long next;
1211
1212 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213 if (!dst_p4d)
1214 return -ENOMEM;
1215 src_p4d = p4d_offset(src_pgd, addr);
1216 do {
1217 next = p4d_addr_end(addr, end);
1218 if (p4d_none_or_clear_bad(src_p4d))
1219 continue;
1220 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221 addr, next))
1222 return -ENOMEM;
1223 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1224 return 0;
1225 }
1226
1227 /*
1228 * 进程地址空间拷贝核心函数
1229 *
1230 * 会沿着页表的PGD,P4D,PUD,PMD以及PTE的方向遍历页表
1231 * 遍历页表函数: copy_one_pte()
1232 */
1233 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1234 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1235 {
1236 pgd_t *src_pgd, *dst_pgd;
1237 unsigned long next;
1238 unsigned long addr = src_vma->vm_start;
1239 unsigned long end = src_vma->vm_end;
1240 struct mm_struct *dst_mm = dst_vma->vm_mm;
1241 struct mm_struct *src_mm = src_vma->vm_mm;
1242 struct mmu_notifier_range range;
1243 bool is_cow;
1244 int ret;
1245
1246 /*
1247 * Don't copy ptes where a page fault will fill them correctly.
1248 * Fork becomes much lighter when there are big shared or private
1249 * readonly mappings. The tradeoff is that copy_page_range is more
1250 * efficient than faulting.
1251 */
1252 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1253 !src_vma->anon_vma)
1254 return 0;
1255
1256 if (is_vm_hugetlb_page(src_vma))
1257 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1258
1259 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1260 /*
1261 * We do not free on error cases below as remove_vma
1262 * gets called on error from higher level routine
1263 */
1264 ret = track_pfn_copy(src_vma);
1265 if (ret)
1266 return ret;
1267 }
1268
1269 /*
1270 * We need to invalidate the secondary MMU mappings only when
1271 * there could be a permission downgrade on the ptes of the
1272 * parent mm. And a permission downgrade will only happen if
1273 * is_cow_mapping() returns true.
1274 */
1275 is_cow = is_cow_mapping(src_vma->vm_flags);
1276
1277 if (is_cow) {
1278 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1279 0, src_vma, src_mm, addr, end);
1280 mmu_notifier_invalidate_range_start(&range);
1281 /*
1282 * Disabling preemption is not needed for the write side, as
1283 * the read side doesn't spin, but goes to the mmap_lock.
1284 *
1285 * Use the raw variant of the seqcount_t write API to avoid
1286 * lockdep complaining about preemptibility.
1287 */
1288 mmap_assert_write_locked(src_mm);
1289 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1290 }
1291
1292 ret = 0;
1293 dst_pgd = pgd_offset(dst_mm, addr);
1294 src_pgd = pgd_offset(src_mm, addr);
1295 do {
1296 next = pgd_addr_end(addr, end);
1297 if (pgd_none_or_clear_bad(src_pgd))
1298 continue;
1299 ///遍历拷贝页表
1300 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1301 addr, next))) {
1302 ret = -ENOMEM;
1303 break;
1304 }
1305 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1306
1307 if (is_cow) {
1308 raw_write_seqcount_end(&src_mm->write_protect_seq);
1309 mmu_notifier_invalidate_range_end(&range);
1310 }
1311 return ret;
1312 }
1313
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1314 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1315 struct vm_area_struct *vma, pmd_t *pmd,
1316 unsigned long addr, unsigned long end,
1317 struct zap_details *details)
1318 {
1319 struct mm_struct *mm = tlb->mm;
1320 int force_flush = 0;
1321 int rss[NR_MM_COUNTERS];
1322 spinlock_t *ptl;
1323 pte_t *start_pte;
1324 pte_t *pte;
1325 swp_entry_t entry;
1326
1327 tlb_change_page_size(tlb, PAGE_SIZE);
1328 again:
1329 init_rss_vec(rss);
1330 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1331 pte = start_pte;
1332 flush_tlb_batched_pending(mm);
1333 arch_enter_lazy_mmu_mode();
1334 do {
1335 pte_t ptent = *pte;
1336 if (pte_none(ptent))
1337 continue;
1338
1339 if (need_resched())
1340 break;
1341
1342 if (pte_present(ptent)) {
1343 struct page *page;
1344
1345 page = vm_normal_page(vma, addr, ptent);
1346 if (unlikely(details) && page) {
1347 /*
1348 * unmap_shared_mapping_pages() wants to
1349 * invalidate cache without truncating:
1350 * unmap shared but keep private pages.
1351 */
1352 if (details->check_mapping &&
1353 details->check_mapping != page_rmapping(page))
1354 continue;
1355 }
1356 ptent = ptep_get_and_clear_full(mm, addr, pte,
1357 tlb->fullmm);
1358 tlb_remove_tlb_entry(tlb, pte, addr);
1359 if (unlikely(!page))
1360 continue;
1361
1362 if (!PageAnon(page)) {
1363 if (pte_dirty(ptent)) {
1364 force_flush = 1;
1365 set_page_dirty(page);
1366 }
1367 if (pte_young(ptent) &&
1368 likely(!(vma->vm_flags & VM_SEQ_READ)))
1369 mark_page_accessed(page);
1370 }
1371 rss[mm_counter(page)]--;
1372 page_remove_rmap(page, false);
1373 if (unlikely(page_mapcount(page) < 0))
1374 print_bad_pte(vma, addr, ptent, page);
1375 if (unlikely(__tlb_remove_page(tlb, page))) {
1376 force_flush = 1;
1377 addr += PAGE_SIZE;
1378 break;
1379 }
1380 continue;
1381 }
1382
1383 entry = pte_to_swp_entry(ptent);
1384 if (is_device_private_entry(entry) ||
1385 is_device_exclusive_entry(entry)) {
1386 struct page *page = pfn_swap_entry_to_page(entry);
1387
1388 if (unlikely(details && details->check_mapping)) {
1389 /*
1390 * unmap_shared_mapping_pages() wants to
1391 * invalidate cache without truncating:
1392 * unmap shared but keep private pages.
1393 */
1394 if (details->check_mapping !=
1395 page_rmapping(page))
1396 continue;
1397 }
1398
1399 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1400 rss[mm_counter(page)]--;
1401
1402 if (is_device_private_entry(entry))
1403 page_remove_rmap(page, false);
1404
1405 put_page(page);
1406 continue;
1407 }
1408
1409 /* If details->check_mapping, we leave swap entries. */
1410 if (unlikely(details))
1411 continue;
1412
1413 if (!non_swap_entry(entry))
1414 rss[MM_SWAPENTS]--;
1415 else if (is_migration_entry(entry)) {
1416 struct page *page;
1417
1418 page = pfn_swap_entry_to_page(entry);
1419 rss[mm_counter(page)]--;
1420 }
1421 if (unlikely(!free_swap_and_cache(entry)))
1422 print_bad_pte(vma, addr, ptent, NULL);
1423 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1424 } while (pte++, addr += PAGE_SIZE, addr != end);
1425
1426 add_mm_rss_vec(mm, rss);
1427 arch_leave_lazy_mmu_mode();
1428
1429 /* Do the actual TLB flush before dropping ptl */
1430 if (force_flush)
1431 tlb_flush_mmu_tlbonly(tlb);
1432 pte_unmap_unlock(start_pte, ptl);
1433
1434 /*
1435 * If we forced a TLB flush (either due to running out of
1436 * batch buffers or because we needed to flush dirty TLB
1437 * entries before releasing the ptl), free the batched
1438 * memory too. Restart if we didn't do everything.
1439 */
1440 if (force_flush) {
1441 force_flush = 0;
1442 tlb_flush_mmu(tlb);
1443 }
1444
1445 if (addr != end) {
1446 cond_resched();
1447 goto again;
1448 }
1449
1450 return addr;
1451 }
1452
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1453 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1454 struct vm_area_struct *vma, pud_t *pud,
1455 unsigned long addr, unsigned long end,
1456 struct zap_details *details)
1457 {
1458 pmd_t *pmd;
1459 unsigned long next;
1460
1461 pmd = pmd_offset(pud, addr);
1462 do {
1463 next = pmd_addr_end(addr, end);
1464 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1465 if (next - addr != HPAGE_PMD_SIZE)
1466 __split_huge_pmd(vma, pmd, addr, false, NULL);
1467 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1468 goto next;
1469 /* fall through */
1470 } else if (details && details->single_page &&
1471 PageTransCompound(details->single_page) &&
1472 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1473 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1474 /*
1475 * Take and drop THP pmd lock so that we cannot return
1476 * prematurely, while zap_huge_pmd() has cleared *pmd,
1477 * but not yet decremented compound_mapcount().
1478 */
1479 spin_unlock(ptl);
1480 }
1481
1482 /*
1483 * Here there can be other concurrent MADV_DONTNEED or
1484 * trans huge page faults running, and if the pmd is
1485 * none or trans huge it can change under us. This is
1486 * because MADV_DONTNEED holds the mmap_lock in read
1487 * mode.
1488 */
1489 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1490 goto next;
1491 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1492 next:
1493 cond_resched();
1494 } while (pmd++, addr = next, addr != end);
1495
1496 return addr;
1497 }
1498
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1499 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1500 struct vm_area_struct *vma, p4d_t *p4d,
1501 unsigned long addr, unsigned long end,
1502 struct zap_details *details)
1503 {
1504 pud_t *pud;
1505 unsigned long next;
1506
1507 pud = pud_offset(p4d, addr);
1508 do {
1509 next = pud_addr_end(addr, end);
1510 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1511 if (next - addr != HPAGE_PUD_SIZE) {
1512 mmap_assert_locked(tlb->mm);
1513 split_huge_pud(vma, pud, addr);
1514 } else if (zap_huge_pud(tlb, vma, pud, addr))
1515 goto next;
1516 /* fall through */
1517 }
1518 if (pud_none_or_clear_bad(pud))
1519 continue;
1520 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1521 next:
1522 cond_resched();
1523 } while (pud++, addr = next, addr != end);
1524
1525 return addr;
1526 }
1527
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1528 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1529 struct vm_area_struct *vma, pgd_t *pgd,
1530 unsigned long addr, unsigned long end,
1531 struct zap_details *details)
1532 {
1533 p4d_t *p4d;
1534 unsigned long next;
1535
1536 p4d = p4d_offset(pgd, addr);
1537 do {
1538 next = p4d_addr_end(addr, end);
1539 if (p4d_none_or_clear_bad(p4d))
1540 continue;
1541 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1542 } while (p4d++, addr = next, addr != end);
1543
1544 return addr;
1545 }
1546
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1547 void unmap_page_range(struct mmu_gather *tlb,
1548 struct vm_area_struct *vma,
1549 unsigned long addr, unsigned long end,
1550 struct zap_details *details)
1551 {
1552 pgd_t *pgd;
1553 unsigned long next;
1554
1555 BUG_ON(addr >= end);
1556 tlb_start_vma(tlb, vma);
1557 pgd = pgd_offset(vma->vm_mm, addr);
1558 do {
1559 next = pgd_addr_end(addr, end);
1560 if (pgd_none_or_clear_bad(pgd))
1561 continue;
1562 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1563 } while (pgd++, addr = next, addr != end);
1564 tlb_end_vma(tlb, vma);
1565 }
1566
1567
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1568 static void unmap_single_vma(struct mmu_gather *tlb,
1569 struct vm_area_struct *vma, unsigned long start_addr,
1570 unsigned long end_addr,
1571 struct zap_details *details)
1572 {
1573 unsigned long start = max(vma->vm_start, start_addr);
1574 unsigned long end;
1575
1576 if (start >= vma->vm_end)
1577 return;
1578 end = min(vma->vm_end, end_addr);
1579 if (end <= vma->vm_start)
1580 return;
1581
1582 if (vma->vm_file)
1583 uprobe_munmap(vma, start, end);
1584
1585 if (unlikely(vma->vm_flags & VM_PFNMAP))
1586 untrack_pfn(vma, 0, 0);
1587
1588 if (start != end) {
1589 if (unlikely(is_vm_hugetlb_page(vma))) {
1590 /*
1591 * It is undesirable to test vma->vm_file as it
1592 * should be non-null for valid hugetlb area.
1593 * However, vm_file will be NULL in the error
1594 * cleanup path of mmap_region. When
1595 * hugetlbfs ->mmap method fails,
1596 * mmap_region() nullifies vma->vm_file
1597 * before calling this function to clean up.
1598 * Since no pte has actually been setup, it is
1599 * safe to do nothing in this case.
1600 */
1601 if (vma->vm_file) {
1602 i_mmap_lock_write(vma->vm_file->f_mapping);
1603 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1604 i_mmap_unlock_write(vma->vm_file->f_mapping);
1605 }
1606 } else
1607 unmap_page_range(tlb, vma, start, end, details);
1608 }
1609 }
1610
1611 /**
1612 * unmap_vmas - unmap a range of memory covered by a list of vma's
1613 * @tlb: address of the caller's struct mmu_gather
1614 * @vma: the starting vma
1615 * @start_addr: virtual address at which to start unmapping
1616 * @end_addr: virtual address at which to end unmapping
1617 *
1618 * Unmap all pages in the vma list.
1619 *
1620 * Only addresses between `start' and `end' will be unmapped.
1621 *
1622 * The VMA list must be sorted in ascending virtual address order.
1623 *
1624 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1625 * range after unmap_vmas() returns. So the only responsibility here is to
1626 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1627 * drops the lock and schedules.
1628 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1629 void unmap_vmas(struct mmu_gather *tlb,
1630 struct vm_area_struct *vma, unsigned long start_addr,
1631 unsigned long end_addr)
1632 {
1633 struct mmu_notifier_range range;
1634
1635 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1636 start_addr, end_addr);
1637 mmu_notifier_invalidate_range_start(&range);
1638 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1639 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1640 mmu_notifier_invalidate_range_end(&range);
1641 }
1642
1643 /**
1644 * zap_page_range - remove user pages in a given range
1645 * @vma: vm_area_struct holding the applicable pages
1646 * @start: starting address of pages to zap
1647 * @size: number of bytes to zap
1648 *
1649 * Caller must protect the VMA list
1650 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1651 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1652 unsigned long size)
1653 {
1654 struct mmu_notifier_range range;
1655 struct mmu_gather tlb;
1656
1657 lru_add_drain();
1658 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1659 start, start + size);
1660 tlb_gather_mmu(&tlb, vma->vm_mm);
1661 update_hiwater_rss(vma->vm_mm);
1662 mmu_notifier_invalidate_range_start(&range);
1663 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1664 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1665 mmu_notifier_invalidate_range_end(&range);
1666 tlb_finish_mmu(&tlb);
1667 }
1668
1669 /**
1670 * zap_page_range_single - remove user pages in a given range
1671 * @vma: vm_area_struct holding the applicable pages
1672 * @address: starting address of pages to zap
1673 * @size: number of bytes to zap
1674 * @details: details of shared cache invalidation
1675 *
1676 * The range must fit into one VMA.
1677 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1678 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1679 unsigned long size, struct zap_details *details)
1680 {
1681 struct mmu_notifier_range range;
1682 struct mmu_gather tlb;
1683
1684 lru_add_drain();
1685 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1686 address, address + size);
1687 tlb_gather_mmu(&tlb, vma->vm_mm);
1688 update_hiwater_rss(vma->vm_mm);
1689 mmu_notifier_invalidate_range_start(&range);
1690 unmap_single_vma(&tlb, vma, address, range.end, details);
1691 mmu_notifier_invalidate_range_end(&range);
1692 tlb_finish_mmu(&tlb);
1693 }
1694
1695 /**
1696 * zap_vma_ptes - remove ptes mapping the vma
1697 * @vma: vm_area_struct holding ptes to be zapped
1698 * @address: starting address of pages to zap
1699 * @size: number of bytes to zap
1700 *
1701 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1702 *
1703 * The entire address range must be fully contained within the vma.
1704 *
1705 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1706 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1707 unsigned long size)
1708 {
1709 if (address < vma->vm_start || address + size > vma->vm_end ||
1710 !(vma->vm_flags & VM_PFNMAP))
1711 return;
1712
1713 zap_page_range_single(vma, address, size, NULL);
1714 }
1715 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1716
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1717 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1718 {
1719 pgd_t *pgd;
1720 p4d_t *p4d;
1721 pud_t *pud;
1722 pmd_t *pmd;
1723
1724 pgd = pgd_offset(mm, addr);
1725 p4d = p4d_alloc(mm, pgd, addr);
1726 if (!p4d)
1727 return NULL;
1728 pud = pud_alloc(mm, p4d, addr);
1729 if (!pud)
1730 return NULL;
1731 pmd = pmd_alloc(mm, pud, addr);
1732 if (!pmd)
1733 return NULL;
1734
1735 VM_BUG_ON(pmd_trans_huge(*pmd));
1736 return pmd;
1737 }
1738
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1739 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1740 spinlock_t **ptl)
1741 {
1742 pmd_t *pmd = walk_to_pmd(mm, addr);
1743
1744 if (!pmd)
1745 return NULL;
1746 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1747 }
1748
validate_page_before_insert(struct page * page)1749 static int validate_page_before_insert(struct page *page)
1750 {
1751 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1752 return -EINVAL;
1753 flush_dcache_page(page);
1754 return 0;
1755 }
1756
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1757 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1758 unsigned long addr, struct page *page, pgprot_t prot)
1759 {
1760 if (!pte_none(*pte))
1761 return -EBUSY;
1762 /* Ok, finally just insert the thing.. */
1763 get_page(page);
1764 inc_mm_counter_fast(mm, mm_counter_file(page));
1765 page_add_file_rmap(page, false);
1766 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1767 return 0;
1768 }
1769
1770 /*
1771 * This is the old fallback for page remapping.
1772 *
1773 * For historical reasons, it only allows reserved pages. Only
1774 * old drivers should use this, and they needed to mark their
1775 * pages reserved for the old functions anyway.
1776 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1777 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1778 struct page *page, pgprot_t prot)
1779 {
1780 struct mm_struct *mm = vma->vm_mm;
1781 int retval;
1782 pte_t *pte;
1783 spinlock_t *ptl;
1784
1785 retval = validate_page_before_insert(page);
1786 if (retval)
1787 goto out;
1788 retval = -ENOMEM;
1789 pte = get_locked_pte(mm, addr, &ptl);
1790 if (!pte)
1791 goto out;
1792 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1793 pte_unmap_unlock(pte, ptl);
1794 out:
1795 return retval;
1796 }
1797
1798 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1799 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1800 unsigned long addr, struct page *page, pgprot_t prot)
1801 {
1802 int err;
1803
1804 if (!page_count(page))
1805 return -EINVAL;
1806 err = validate_page_before_insert(page);
1807 if (err)
1808 return err;
1809 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1810 }
1811
1812 /* insert_pages() amortizes the cost of spinlock operations
1813 * when inserting pages in a loop. Arch *must* define pte_index.
1814 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1815 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1816 struct page **pages, unsigned long *num, pgprot_t prot)
1817 {
1818 pmd_t *pmd = NULL;
1819 pte_t *start_pte, *pte;
1820 spinlock_t *pte_lock;
1821 struct mm_struct *const mm = vma->vm_mm;
1822 unsigned long curr_page_idx = 0;
1823 unsigned long remaining_pages_total = *num;
1824 unsigned long pages_to_write_in_pmd;
1825 int ret;
1826 more:
1827 ret = -EFAULT;
1828 pmd = walk_to_pmd(mm, addr);
1829 if (!pmd)
1830 goto out;
1831
1832 pages_to_write_in_pmd = min_t(unsigned long,
1833 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1834
1835 /* Allocate the PTE if necessary; takes PMD lock once only. */
1836 ret = -ENOMEM;
1837 if (pte_alloc(mm, pmd))
1838 goto out;
1839
1840 while (pages_to_write_in_pmd) {
1841 int pte_idx = 0;
1842 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1843
1844 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1845 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1846 int err = insert_page_in_batch_locked(mm, pte,
1847 addr, pages[curr_page_idx], prot);
1848 if (unlikely(err)) {
1849 pte_unmap_unlock(start_pte, pte_lock);
1850 ret = err;
1851 remaining_pages_total -= pte_idx;
1852 goto out;
1853 }
1854 addr += PAGE_SIZE;
1855 ++curr_page_idx;
1856 }
1857 pte_unmap_unlock(start_pte, pte_lock);
1858 pages_to_write_in_pmd -= batch_size;
1859 remaining_pages_total -= batch_size;
1860 }
1861 if (remaining_pages_total)
1862 goto more;
1863 ret = 0;
1864 out:
1865 *num = remaining_pages_total;
1866 return ret;
1867 }
1868 #endif /* ifdef pte_index */
1869
1870 /**
1871 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1872 * @vma: user vma to map to
1873 * @addr: target start user address of these pages
1874 * @pages: source kernel pages
1875 * @num: in: number of pages to map. out: number of pages that were *not*
1876 * mapped. (0 means all pages were successfully mapped).
1877 *
1878 * Preferred over vm_insert_page() when inserting multiple pages.
1879 *
1880 * In case of error, we may have mapped a subset of the provided
1881 * pages. It is the caller's responsibility to account for this case.
1882 *
1883 * The same restrictions apply as in vm_insert_page().
1884 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1885 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1886 struct page **pages, unsigned long *num)
1887 {
1888 #ifdef pte_index
1889 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1890
1891 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1892 return -EFAULT;
1893 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1894 BUG_ON(mmap_read_trylock(vma->vm_mm));
1895 BUG_ON(vma->vm_flags & VM_PFNMAP);
1896 vma->vm_flags |= VM_MIXEDMAP;
1897 }
1898 /* Defer page refcount checking till we're about to map that page. */
1899 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1900 #else
1901 unsigned long idx = 0, pgcount = *num;
1902 int err = -EINVAL;
1903
1904 for (; idx < pgcount; ++idx) {
1905 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1906 if (err)
1907 break;
1908 }
1909 *num = pgcount - idx;
1910 return err;
1911 #endif /* ifdef pte_index */
1912 }
1913 EXPORT_SYMBOL(vm_insert_pages);
1914
1915 /**
1916 * vm_insert_page - insert single page into user vma
1917 * @vma: user vma to map to
1918 * @addr: target user address of this page
1919 * @page: source kernel page
1920 *
1921 * This allows drivers to insert individual pages they've allocated
1922 * into a user vma.
1923 *
1924 * The page has to be a nice clean _individual_ kernel allocation.
1925 * If you allocate a compound page, you need to have marked it as
1926 * such (__GFP_COMP), or manually just split the page up yourself
1927 * (see split_page()).
1928 *
1929 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1930 * took an arbitrary page protection parameter. This doesn't allow
1931 * that. Your vma protection will have to be set up correctly, which
1932 * means that if you want a shared writable mapping, you'd better
1933 * ask for a shared writable mapping!
1934 *
1935 * The page does not need to be reserved.
1936 *
1937 * Usually this function is called from f_op->mmap() handler
1938 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1939 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1940 * function from other places, for example from page-fault handler.
1941 *
1942 * Return: %0 on success, negative error code otherwise.
1943 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1944 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1945 struct page *page)
1946 {
1947 if (addr < vma->vm_start || addr >= vma->vm_end)
1948 return -EFAULT;
1949 if (!page_count(page))
1950 return -EINVAL;
1951 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1952 BUG_ON(mmap_read_trylock(vma->vm_mm));
1953 BUG_ON(vma->vm_flags & VM_PFNMAP);
1954 vma->vm_flags |= VM_MIXEDMAP;
1955 }
1956 return insert_page(vma, addr, page, vma->vm_page_prot);
1957 }
1958 EXPORT_SYMBOL(vm_insert_page);
1959
1960 /*
1961 * __vm_map_pages - maps range of kernel pages into user vma
1962 * @vma: user vma to map to
1963 * @pages: pointer to array of source kernel pages
1964 * @num: number of pages in page array
1965 * @offset: user's requested vm_pgoff
1966 *
1967 * This allows drivers to map range of kernel pages into a user vma.
1968 *
1969 * Return: 0 on success and error code otherwise.
1970 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1971 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1972 unsigned long num, unsigned long offset)
1973 {
1974 unsigned long count = vma_pages(vma);
1975 unsigned long uaddr = vma->vm_start;
1976 int ret, i;
1977
1978 /* Fail if the user requested offset is beyond the end of the object */
1979 if (offset >= num)
1980 return -ENXIO;
1981
1982 /* Fail if the user requested size exceeds available object size */
1983 if (count > num - offset)
1984 return -ENXIO;
1985
1986 for (i = 0; i < count; i++) {
1987 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1988 if (ret < 0)
1989 return ret;
1990 uaddr += PAGE_SIZE;
1991 }
1992
1993 return 0;
1994 }
1995
1996 /**
1997 * vm_map_pages - maps range of kernel pages starts with non zero offset
1998 * @vma: user vma to map to
1999 * @pages: pointer to array of source kernel pages
2000 * @num: number of pages in page array
2001 *
2002 * Maps an object consisting of @num pages, catering for the user's
2003 * requested vm_pgoff
2004 *
2005 * If we fail to insert any page into the vma, the function will return
2006 * immediately leaving any previously inserted pages present. Callers
2007 * from the mmap handler may immediately return the error as their caller
2008 * will destroy the vma, removing any successfully inserted pages. Other
2009 * callers should make their own arrangements for calling unmap_region().
2010 *
2011 * Context: Process context. Called by mmap handlers.
2012 * Return: 0 on success and error code otherwise.
2013 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2014 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2015 unsigned long num)
2016 {
2017 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2018 }
2019 EXPORT_SYMBOL(vm_map_pages);
2020
2021 /**
2022 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2023 * @vma: user vma to map to
2024 * @pages: pointer to array of source kernel pages
2025 * @num: number of pages in page array
2026 *
2027 * Similar to vm_map_pages(), except that it explicitly sets the offset
2028 * to 0. This function is intended for the drivers that did not consider
2029 * vm_pgoff.
2030 *
2031 * Context: Process context. Called by mmap handlers.
2032 * Return: 0 on success and error code otherwise.
2033 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2034 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2035 unsigned long num)
2036 {
2037 return __vm_map_pages(vma, pages, num, 0);
2038 }
2039 EXPORT_SYMBOL(vm_map_pages_zero);
2040
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2041 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2042 pfn_t pfn, pgprot_t prot, bool mkwrite)
2043 {
2044 struct mm_struct *mm = vma->vm_mm;
2045 pte_t *pte, entry;
2046 spinlock_t *ptl;
2047
2048 pte = get_locked_pte(mm, addr, &ptl);
2049 if (!pte)
2050 return VM_FAULT_OOM;
2051 if (!pte_none(*pte)) {
2052 if (mkwrite) {
2053 /*
2054 * For read faults on private mappings the PFN passed
2055 * in may not match the PFN we have mapped if the
2056 * mapped PFN is a writeable COW page. In the mkwrite
2057 * case we are creating a writable PTE for a shared
2058 * mapping and we expect the PFNs to match. If they
2059 * don't match, we are likely racing with block
2060 * allocation and mapping invalidation so just skip the
2061 * update.
2062 */
2063 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2064 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2065 goto out_unlock;
2066 }
2067 entry = pte_mkyoung(*pte);
2068 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2069 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2070 update_mmu_cache(vma, addr, pte);
2071 }
2072 goto out_unlock;
2073 }
2074
2075 /* Ok, finally just insert the thing.. */
2076 if (pfn_t_devmap(pfn))
2077 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2078 else
2079 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2080
2081 if (mkwrite) {
2082 entry = pte_mkyoung(entry);
2083 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2084 }
2085
2086 set_pte_at(mm, addr, pte, entry);
2087 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2088
2089 out_unlock:
2090 pte_unmap_unlock(pte, ptl);
2091 return VM_FAULT_NOPAGE;
2092 }
2093
2094 /**
2095 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2096 * @vma: user vma to map to
2097 * @addr: target user address of this page
2098 * @pfn: source kernel pfn
2099 * @pgprot: pgprot flags for the inserted page
2100 *
2101 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2102 * to override pgprot on a per-page basis.
2103 *
2104 * This only makes sense for IO mappings, and it makes no sense for
2105 * COW mappings. In general, using multiple vmas is preferable;
2106 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2107 * impractical.
2108 *
2109 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2110 * a value of @pgprot different from that of @vma->vm_page_prot.
2111 *
2112 * Context: Process context. May allocate using %GFP_KERNEL.
2113 * Return: vm_fault_t value.
2114 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2115 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2116 unsigned long pfn, pgprot_t pgprot)
2117 {
2118 /*
2119 * Technically, architectures with pte_special can avoid all these
2120 * restrictions (same for remap_pfn_range). However we would like
2121 * consistency in testing and feature parity among all, so we should
2122 * try to keep these invariants in place for everybody.
2123 */
2124 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2125 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2126 (VM_PFNMAP|VM_MIXEDMAP));
2127 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2128 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2129
2130 if (addr < vma->vm_start || addr >= vma->vm_end)
2131 return VM_FAULT_SIGBUS;
2132
2133 if (!pfn_modify_allowed(pfn, pgprot))
2134 return VM_FAULT_SIGBUS;
2135
2136 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2137
2138 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2139 false);
2140 }
2141 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2142
2143 /**
2144 * vmf_insert_pfn - insert single pfn into user vma
2145 * @vma: user vma to map to
2146 * @addr: target user address of this page
2147 * @pfn: source kernel pfn
2148 *
2149 * Similar to vm_insert_page, this allows drivers to insert individual pages
2150 * they've allocated into a user vma. Same comments apply.
2151 *
2152 * This function should only be called from a vm_ops->fault handler, and
2153 * in that case the handler should return the result of this function.
2154 *
2155 * vma cannot be a COW mapping.
2156 *
2157 * As this is called only for pages that do not currently exist, we
2158 * do not need to flush old virtual caches or the TLB.
2159 *
2160 * Context: Process context. May allocate using %GFP_KERNEL.
2161 * Return: vm_fault_t value.
2162 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2163 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2164 unsigned long pfn)
2165 {
2166 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2167 }
2168 EXPORT_SYMBOL(vmf_insert_pfn);
2169
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2170 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2171 {
2172 /* these checks mirror the abort conditions in vm_normal_page */
2173 if (vma->vm_flags & VM_MIXEDMAP)
2174 return true;
2175 if (pfn_t_devmap(pfn))
2176 return true;
2177 if (pfn_t_special(pfn))
2178 return true;
2179 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2180 return true;
2181 return false;
2182 }
2183
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2184 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2185 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2186 bool mkwrite)
2187 {
2188 int err;
2189
2190 BUG_ON(!vm_mixed_ok(vma, pfn));
2191
2192 if (addr < vma->vm_start || addr >= vma->vm_end)
2193 return VM_FAULT_SIGBUS;
2194
2195 track_pfn_insert(vma, &pgprot, pfn);
2196
2197 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2198 return VM_FAULT_SIGBUS;
2199
2200 /*
2201 * If we don't have pte special, then we have to use the pfn_valid()
2202 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2203 * refcount the page if pfn_valid is true (hence insert_page rather
2204 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2205 * without pte special, it would there be refcounted as a normal page.
2206 */
2207 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2208 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2209 struct page *page;
2210
2211 /*
2212 * At this point we are committed to insert_page()
2213 * regardless of whether the caller specified flags that
2214 * result in pfn_t_has_page() == false.
2215 */
2216 page = pfn_to_page(pfn_t_to_pfn(pfn));
2217 err = insert_page(vma, addr, page, pgprot);
2218 } else {
2219 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2220 }
2221
2222 if (err == -ENOMEM)
2223 return VM_FAULT_OOM;
2224 if (err < 0 && err != -EBUSY)
2225 return VM_FAULT_SIGBUS;
2226
2227 return VM_FAULT_NOPAGE;
2228 }
2229
2230 /**
2231 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2232 * @vma: user vma to map to
2233 * @addr: target user address of this page
2234 * @pfn: source kernel pfn
2235 * @pgprot: pgprot flags for the inserted page
2236 *
2237 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2238 * to override pgprot on a per-page basis.
2239 *
2240 * Typically this function should be used by drivers to set caching- and
2241 * encryption bits different than those of @vma->vm_page_prot, because
2242 * the caching- or encryption mode may not be known at mmap() time.
2243 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2244 * to set caching and encryption bits for those vmas (except for COW pages).
2245 * This is ensured by core vm only modifying these page table entries using
2246 * functions that don't touch caching- or encryption bits, using pte_modify()
2247 * if needed. (See for example mprotect()).
2248 * Also when new page-table entries are created, this is only done using the
2249 * fault() callback, and never using the value of vma->vm_page_prot,
2250 * except for page-table entries that point to anonymous pages as the result
2251 * of COW.
2252 *
2253 * Context: Process context. May allocate using %GFP_KERNEL.
2254 * Return: vm_fault_t value.
2255 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2256 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2257 pfn_t pfn, pgprot_t pgprot)
2258 {
2259 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2260 }
2261 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2262
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2263 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2264 pfn_t pfn)
2265 {
2266 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2267 }
2268 EXPORT_SYMBOL(vmf_insert_mixed);
2269
2270 /*
2271 * If the insertion of PTE failed because someone else already added a
2272 * different entry in the mean time, we treat that as success as we assume
2273 * the same entry was actually inserted.
2274 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2275 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2276 unsigned long addr, pfn_t pfn)
2277 {
2278 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2279 }
2280 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2281
2282 /*
2283 * maps a range of physical memory into the requested pages. the old
2284 * mappings are removed. any references to nonexistent pages results
2285 * in null mappings (currently treated as "copy-on-access")
2286 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2287 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2288 unsigned long addr, unsigned long end,
2289 unsigned long pfn, pgprot_t prot)
2290 {
2291 pte_t *pte, *mapped_pte;
2292 spinlock_t *ptl;
2293 int err = 0;
2294
2295 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2296 if (!pte)
2297 return -ENOMEM;
2298 arch_enter_lazy_mmu_mode();
2299 do {
2300 BUG_ON(!pte_none(*pte));
2301 if (!pfn_modify_allowed(pfn, prot)) {
2302 err = -EACCES;
2303 break;
2304 }
2305 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2306 pfn++;
2307 } while (pte++, addr += PAGE_SIZE, addr != end);
2308 arch_leave_lazy_mmu_mode();
2309 pte_unmap_unlock(mapped_pte, ptl);
2310 return err;
2311 }
2312
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2313 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2314 unsigned long addr, unsigned long end,
2315 unsigned long pfn, pgprot_t prot)
2316 {
2317 pmd_t *pmd;
2318 unsigned long next;
2319 int err;
2320
2321 pfn -= addr >> PAGE_SHIFT;
2322 pmd = pmd_alloc(mm, pud, addr);
2323 if (!pmd)
2324 return -ENOMEM;
2325 VM_BUG_ON(pmd_trans_huge(*pmd));
2326 do {
2327 next = pmd_addr_end(addr, end);
2328 err = remap_pte_range(mm, pmd, addr, next,
2329 pfn + (addr >> PAGE_SHIFT), prot);
2330 if (err)
2331 return err;
2332 } while (pmd++, addr = next, addr != end);
2333 return 0;
2334 }
2335
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2336 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2337 unsigned long addr, unsigned long end,
2338 unsigned long pfn, pgprot_t prot)
2339 {
2340 pud_t *pud;
2341 unsigned long next;
2342 int err;
2343
2344 pfn -= addr >> PAGE_SHIFT;
2345 pud = pud_alloc(mm, p4d, addr);
2346 if (!pud)
2347 return -ENOMEM;
2348 do {
2349 next = pud_addr_end(addr, end);
2350 err = remap_pmd_range(mm, pud, addr, next,
2351 pfn + (addr >> PAGE_SHIFT), prot);
2352 if (err)
2353 return err;
2354 } while (pud++, addr = next, addr != end);
2355 return 0;
2356 }
2357
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2358 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2359 unsigned long addr, unsigned long end,
2360 unsigned long pfn, pgprot_t prot)
2361 {
2362 p4d_t *p4d;
2363 unsigned long next;
2364 int err;
2365
2366 pfn -= addr >> PAGE_SHIFT;
2367 p4d = p4d_alloc(mm, pgd, addr);
2368 if (!p4d)
2369 return -ENOMEM;
2370 do {
2371 next = p4d_addr_end(addr, end);
2372 err = remap_pud_range(mm, p4d, addr, next,
2373 pfn + (addr >> PAGE_SHIFT), prot);
2374 if (err)
2375 return err;
2376 } while (p4d++, addr = next, addr != end);
2377 return 0;
2378 }
2379
2380 /*
2381 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2382 * must have pre-validated the caching bits of the pgprot_t.
2383 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2384 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2385 unsigned long pfn, unsigned long size, pgprot_t prot)
2386 {
2387 pgd_t *pgd;
2388 unsigned long next;
2389 unsigned long end = addr + PAGE_ALIGN(size);
2390 struct mm_struct *mm = vma->vm_mm;
2391 int err;
2392
2393 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2394 return -EINVAL;
2395
2396 /*
2397 * Physically remapped pages are special. Tell the
2398 * rest of the world about it:
2399 * VM_IO tells people not to look at these pages
2400 * (accesses can have side effects).
2401 * VM_PFNMAP tells the core MM that the base pages are just
2402 * raw PFN mappings, and do not have a "struct page" associated
2403 * with them.
2404 * VM_DONTEXPAND
2405 * Disable vma merging and expanding with mremap().
2406 * VM_DONTDUMP
2407 * Omit vma from core dump, even when VM_IO turned off.
2408 *
2409 * There's a horrible special case to handle copy-on-write
2410 * behaviour that some programs depend on. We mark the "original"
2411 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2412 * See vm_normal_page() for details.
2413 */
2414 if (is_cow_mapping(vma->vm_flags)) {
2415 if (addr != vma->vm_start || end != vma->vm_end)
2416 return -EINVAL;
2417 vma->vm_pgoff = pfn;
2418 }
2419
2420 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2421
2422 BUG_ON(addr >= end);
2423 pfn -= addr >> PAGE_SHIFT;
2424 pgd = pgd_offset(mm, addr);
2425 flush_cache_range(vma, addr, end);
2426 do {
2427 next = pgd_addr_end(addr, end);
2428 err = remap_p4d_range(mm, pgd, addr, next,
2429 pfn + (addr >> PAGE_SHIFT), prot);
2430 if (err)
2431 return err;
2432 } while (pgd++, addr = next, addr != end);
2433
2434 return 0;
2435 }
2436
2437 /**
2438 * remap_pfn_range - remap kernel memory to userspace
2439 * @vma: user vma to map to
2440 * @addr: target page aligned user address to start at
2441 * @pfn: page frame number of kernel physical memory address
2442 * @size: size of mapping area
2443 * @prot: page protection flags for this mapping
2444 *
2445 * Note: this is only safe if the mm semaphore is held when called.
2446 *
2447 * Return: %0 on success, negative error code otherwise.
2448 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2449 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2450 unsigned long pfn, unsigned long size, pgprot_t prot)
2451 {
2452 int err;
2453
2454 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2455 if (err)
2456 return -EINVAL;
2457
2458 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2459 if (err)
2460 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2461 return err;
2462 }
2463 EXPORT_SYMBOL(remap_pfn_range);
2464
2465 /**
2466 * vm_iomap_memory - remap memory to userspace
2467 * @vma: user vma to map to
2468 * @start: start of the physical memory to be mapped
2469 * @len: size of area
2470 *
2471 * This is a simplified io_remap_pfn_range() for common driver use. The
2472 * driver just needs to give us the physical memory range to be mapped,
2473 * we'll figure out the rest from the vma information.
2474 *
2475 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2476 * whatever write-combining details or similar.
2477 *
2478 * Return: %0 on success, negative error code otherwise.
2479 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2480 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2481 {
2482 unsigned long vm_len, pfn, pages;
2483
2484 /* Check that the physical memory area passed in looks valid */
2485 if (start + len < start)
2486 return -EINVAL;
2487 /*
2488 * You *really* shouldn't map things that aren't page-aligned,
2489 * but we've historically allowed it because IO memory might
2490 * just have smaller alignment.
2491 */
2492 len += start & ~PAGE_MASK;
2493 pfn = start >> PAGE_SHIFT;
2494 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2495 if (pfn + pages < pfn)
2496 return -EINVAL;
2497
2498 /* We start the mapping 'vm_pgoff' pages into the area */
2499 if (vma->vm_pgoff > pages)
2500 return -EINVAL;
2501 pfn += vma->vm_pgoff;
2502 pages -= vma->vm_pgoff;
2503
2504 /* Can we fit all of the mapping? */
2505 vm_len = vma->vm_end - vma->vm_start;
2506 if (vm_len >> PAGE_SHIFT > pages)
2507 return -EINVAL;
2508
2509 /* Ok, let it rip */
2510 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2511 }
2512 EXPORT_SYMBOL(vm_iomap_memory);
2513
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2514 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2515 unsigned long addr, unsigned long end,
2516 pte_fn_t fn, void *data, bool create,
2517 pgtbl_mod_mask *mask)
2518 {
2519 pte_t *pte, *mapped_pte;
2520 int err = 0;
2521 spinlock_t *ptl;
2522
2523 if (create) {
2524 mapped_pte = pte = (mm == &init_mm) ?
2525 pte_alloc_kernel_track(pmd, addr, mask) :
2526 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2527 if (!pte)
2528 return -ENOMEM;
2529 } else {
2530 mapped_pte = pte = (mm == &init_mm) ?
2531 pte_offset_kernel(pmd, addr) :
2532 pte_offset_map_lock(mm, pmd, addr, &ptl);
2533 }
2534
2535 BUG_ON(pmd_huge(*pmd));
2536
2537 arch_enter_lazy_mmu_mode();
2538
2539 if (fn) {
2540 do {
2541 if (create || !pte_none(*pte)) {
2542 err = fn(pte++, addr, data);
2543 if (err)
2544 break;
2545 }
2546 } while (addr += PAGE_SIZE, addr != end);
2547 }
2548 *mask |= PGTBL_PTE_MODIFIED;
2549
2550 arch_leave_lazy_mmu_mode();
2551
2552 if (mm != &init_mm)
2553 pte_unmap_unlock(mapped_pte, ptl);
2554 return err;
2555 }
2556
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2557 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2558 unsigned long addr, unsigned long end,
2559 pte_fn_t fn, void *data, bool create,
2560 pgtbl_mod_mask *mask)
2561 {
2562 pmd_t *pmd;
2563 unsigned long next;
2564 int err = 0;
2565
2566 BUG_ON(pud_huge(*pud));
2567
2568 if (create) {
2569 pmd = pmd_alloc_track(mm, pud, addr, mask);
2570 if (!pmd)
2571 return -ENOMEM;
2572 } else {
2573 pmd = pmd_offset(pud, addr);
2574 }
2575 do {
2576 next = pmd_addr_end(addr, end);
2577 if (pmd_none(*pmd) && !create)
2578 continue;
2579 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2580 return -EINVAL;
2581 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2582 if (!create)
2583 continue;
2584 pmd_clear_bad(pmd);
2585 }
2586 err = apply_to_pte_range(mm, pmd, addr, next,
2587 fn, data, create, mask);
2588 if (err)
2589 break;
2590 } while (pmd++, addr = next, addr != end);
2591
2592 return err;
2593 }
2594
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2595 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2596 unsigned long addr, unsigned long end,
2597 pte_fn_t fn, void *data, bool create,
2598 pgtbl_mod_mask *mask)
2599 {
2600 pud_t *pud;
2601 unsigned long next;
2602 int err = 0;
2603
2604 if (create) {
2605 pud = pud_alloc_track(mm, p4d, addr, mask);
2606 if (!pud)
2607 return -ENOMEM;
2608 } else {
2609 pud = pud_offset(p4d, addr);
2610 }
2611 do {
2612 next = pud_addr_end(addr, end);
2613 if (pud_none(*pud) && !create)
2614 continue;
2615 if (WARN_ON_ONCE(pud_leaf(*pud)))
2616 return -EINVAL;
2617 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2618 if (!create)
2619 continue;
2620 pud_clear_bad(pud);
2621 }
2622 err = apply_to_pmd_range(mm, pud, addr, next,
2623 fn, data, create, mask);
2624 if (err)
2625 break;
2626 } while (pud++, addr = next, addr != end);
2627
2628 return err;
2629 }
2630
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2631 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2632 unsigned long addr, unsigned long end,
2633 pte_fn_t fn, void *data, bool create,
2634 pgtbl_mod_mask *mask)
2635 {
2636 p4d_t *p4d;
2637 unsigned long next;
2638 int err = 0;
2639
2640 if (create) {
2641 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2642 if (!p4d)
2643 return -ENOMEM;
2644 } else {
2645 p4d = p4d_offset(pgd, addr);
2646 }
2647 do {
2648 next = p4d_addr_end(addr, end);
2649 if (p4d_none(*p4d) && !create)
2650 continue;
2651 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2652 return -EINVAL;
2653 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2654 if (!create)
2655 continue;
2656 p4d_clear_bad(p4d);
2657 }
2658 err = apply_to_pud_range(mm, p4d, addr, next,
2659 fn, data, create, mask);
2660 if (err)
2661 break;
2662 } while (p4d++, addr = next, addr != end);
2663
2664 return err;
2665 }
2666
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2667 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2668 unsigned long size, pte_fn_t fn,
2669 void *data, bool create)
2670 {
2671 pgd_t *pgd;
2672 unsigned long start = addr, next;
2673 unsigned long end = addr + size;
2674 pgtbl_mod_mask mask = 0;
2675 int err = 0;
2676
2677 if (WARN_ON(addr >= end))
2678 return -EINVAL;
2679
2680 pgd = pgd_offset(mm, addr);
2681 do {
2682 next = pgd_addr_end(addr, end);
2683 if (pgd_none(*pgd) && !create)
2684 continue;
2685 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2686 return -EINVAL;
2687 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2688 if (!create)
2689 continue;
2690 pgd_clear_bad(pgd);
2691 }
2692 err = apply_to_p4d_range(mm, pgd, addr, next,
2693 fn, data, create, &mask);
2694 if (err)
2695 break;
2696 } while (pgd++, addr = next, addr != end);
2697
2698 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2699 arch_sync_kernel_mappings(start, start + size);
2700
2701 return err;
2702 }
2703
2704 /*
2705 * Scan a region of virtual memory, filling in page tables as necessary
2706 * and calling a provided function on each leaf page table.
2707 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2708 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2709 unsigned long size, pte_fn_t fn, void *data)
2710 {
2711 return __apply_to_page_range(mm, addr, size, fn, data, true);
2712 }
2713 EXPORT_SYMBOL_GPL(apply_to_page_range);
2714
2715 /*
2716 * Scan a region of virtual memory, calling a provided function on
2717 * each leaf page table where it exists.
2718 *
2719 * Unlike apply_to_page_range, this does _not_ fill in page tables
2720 * where they are absent.
2721 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2722 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2723 unsigned long size, pte_fn_t fn, void *data)
2724 {
2725 return __apply_to_page_range(mm, addr, size, fn, data, false);
2726 }
2727 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2728
2729 /*
2730 * handle_pte_fault chooses page fault handler according to an entry which was
2731 * read non-atomically. Before making any commitment, on those architectures
2732 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2733 * parts, do_swap_page must check under lock before unmapping the pte and
2734 * proceeding (but do_wp_page is only called after already making such a check;
2735 * and do_anonymous_page can safely check later on).
2736 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2737 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2738 pte_t *page_table, pte_t orig_pte)
2739 {
2740 int same = 1;
2741 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2742 if (sizeof(pte_t) > sizeof(unsigned long)) {
2743 spinlock_t *ptl = pte_lockptr(mm, pmd);
2744 spin_lock(ptl);
2745 same = pte_same(*page_table, orig_pte);
2746 spin_unlock(ptl);
2747 }
2748 #endif
2749 pte_unmap(page_table);
2750 return same;
2751 }
2752
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2753 static inline bool cow_user_page(struct page *dst, struct page *src,
2754 struct vm_fault *vmf)
2755 {
2756 bool ret;
2757 void *kaddr;
2758 void __user *uaddr;
2759 bool locked = false;
2760 struct vm_area_struct *vma = vmf->vma;
2761 struct mm_struct *mm = vma->vm_mm;
2762 unsigned long addr = vmf->address;
2763
2764 if (likely(src)) {
2765 copy_user_highpage(dst, src, addr, vma);
2766 return true;
2767 }
2768
2769 /*
2770 * If the source page was a PFN mapping, we don't have
2771 * a "struct page" for it. We do a best-effort copy by
2772 * just copying from the original user address. If that
2773 * fails, we just zero-fill it. Live with it.
2774 */
2775 kaddr = kmap_atomic(dst);
2776 uaddr = (void __user *)(addr & PAGE_MASK);
2777
2778 /*
2779 * On architectures with software "accessed" bits, we would
2780 * take a double page fault, so mark it accessed here.
2781 */
2782 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2783 pte_t entry;
2784
2785 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2786 locked = true;
2787 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2788 /*
2789 * Other thread has already handled the fault
2790 * and update local tlb only
2791 */
2792 update_mmu_tlb(vma, addr, vmf->pte);
2793 ret = false;
2794 goto pte_unlock;
2795 }
2796
2797 entry = pte_mkyoung(vmf->orig_pte);
2798 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2799 update_mmu_cache(vma, addr, vmf->pte);
2800 }
2801
2802 /*
2803 * This really shouldn't fail, because the page is there
2804 * in the page tables. But it might just be unreadable,
2805 * in which case we just give up and fill the result with
2806 * zeroes.
2807 */
2808 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2809 if (locked)
2810 goto warn;
2811
2812 /* Re-validate under PTL if the page is still mapped */
2813 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2814 locked = true;
2815 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2816 /* The PTE changed under us, update local tlb */
2817 update_mmu_tlb(vma, addr, vmf->pte);
2818 ret = false;
2819 goto pte_unlock;
2820 }
2821
2822 /*
2823 * The same page can be mapped back since last copy attempt.
2824 * Try to copy again under PTL.
2825 */
2826 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2827 /*
2828 * Give a warn in case there can be some obscure
2829 * use-case
2830 */
2831 warn:
2832 WARN_ON_ONCE(1);
2833 clear_page(kaddr);
2834 }
2835 }
2836
2837 ret = true;
2838
2839 pte_unlock:
2840 if (locked)
2841 pte_unmap_unlock(vmf->pte, vmf->ptl);
2842 kunmap_atomic(kaddr);
2843 flush_dcache_page(dst);
2844
2845 return ret;
2846 }
2847
__get_fault_gfp_mask(struct vm_area_struct * vma)2848 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2849 {
2850 struct file *vm_file = vma->vm_file;
2851
2852 if (vm_file)
2853 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2854
2855 /*
2856 * Special mappings (e.g. VDSO) do not have any file so fake
2857 * a default GFP_KERNEL for them.
2858 */
2859 return GFP_KERNEL;
2860 }
2861
2862 /*
2863 * Notify the address space that the page is about to become writable so that
2864 * it can prohibit this or wait for the page to get into an appropriate state.
2865 *
2866 * We do this without the lock held, so that it can sleep if it needs to.
2867 */
do_page_mkwrite(struct vm_fault * vmf)2868 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2869 {
2870 vm_fault_t ret;
2871 struct page *page = vmf->page;
2872 unsigned int old_flags = vmf->flags;
2873
2874 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2875
2876 if (vmf->vma->vm_file &&
2877 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2878 return VM_FAULT_SIGBUS;
2879
2880 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2881 /* Restore original flags so that caller is not surprised */
2882 vmf->flags = old_flags;
2883 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2884 return ret;
2885 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2886 lock_page(page);
2887 if (!page->mapping) {
2888 unlock_page(page);
2889 return 0; /* retry */
2890 }
2891 ret |= VM_FAULT_LOCKED;
2892 } else
2893 VM_BUG_ON_PAGE(!PageLocked(page), page);
2894 return ret;
2895 }
2896
2897 /*
2898 * Handle dirtying of a page in shared file mapping on a write fault.
2899 *
2900 * The function expects the page to be locked and unlocks it.
2901 */
fault_dirty_shared_page(struct vm_fault * vmf)2902 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2903 {
2904 struct vm_area_struct *vma = vmf->vma;
2905 struct address_space *mapping;
2906 struct page *page = vmf->page;
2907 bool dirtied;
2908 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2909
2910 dirtied = set_page_dirty(page);
2911 VM_BUG_ON_PAGE(PageAnon(page), page);
2912 /*
2913 * Take a local copy of the address_space - page.mapping may be zeroed
2914 * by truncate after unlock_page(). The address_space itself remains
2915 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2916 * release semantics to prevent the compiler from undoing this copying.
2917 */
2918 mapping = page_rmapping(page);
2919 unlock_page(page);
2920
2921 if (!page_mkwrite)
2922 file_update_time(vma->vm_file);
2923
2924 /*
2925 * Throttle page dirtying rate down to writeback speed.
2926 *
2927 * mapping may be NULL here because some device drivers do not
2928 * set page.mapping but still dirty their pages
2929 *
2930 * Drop the mmap_lock before waiting on IO, if we can. The file
2931 * is pinning the mapping, as per above.
2932 */
2933 if ((dirtied || page_mkwrite) && mapping) {
2934 struct file *fpin;
2935
2936 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2937 balance_dirty_pages_ratelimited(mapping);
2938 if (fpin) {
2939 fput(fpin);
2940 return VM_FAULT_RETRY;
2941 }
2942 }
2943
2944 return 0;
2945 }
2946
2947 /*
2948 * Handle write page faults for pages that can be reused in the current vma
2949 *
2950 * This can happen either due to the mapping being with the VM_SHARED flag,
2951 * or due to us being the last reference standing to the page. In either
2952 * case, all we need to do here is to mark the page as writable and update
2953 * any related book-keeping.
2954 */
wp_page_reuse(struct vm_fault * vmf)2955 static inline void wp_page_reuse(struct vm_fault *vmf)
2956 __releases(vmf->ptl)
2957 {
2958 struct vm_area_struct *vma = vmf->vma;
2959 struct page *page = vmf->page; ///获取缺页异常页面
2960 pte_t entry;
2961 /*
2962 * Clear the pages cpupid information as the existing
2963 * information potentially belongs to a now completely
2964 * unrelated process.
2965 */
2966 if (page)
2967 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2968
2969 ///刷新缺页异常页面的高速缓存
2970 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2971
2972 ///设置PTE的AF位
2973 entry = pte_mkyoung(vmf->orig_pte);
2974
2975 ///设置可写,置脏位
2976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2977
2978 ///设置新PTE到实际页表中
2979 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2980 update_mmu_cache(vma, vmf->address, vmf->pte);
2981 pte_unmap_unlock(vmf->pte, vmf->ptl);
2982 count_vm_event(PGREUSE);
2983 }
2984
2985 /*
2986 * Handle the case of a page which we actually need to copy to a new page.
2987 *
2988 * Called with mmap_lock locked and the old page referenced, but
2989 * without the ptl held.
2990 *
2991 * High level logic flow:
2992 *
2993 * - Allocate a page, copy the content of the old page to the new one.
2994 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2995 * - Take the PTL. If the pte changed, bail out and release the allocated page
2996 * - If the pte is still the way we remember it, update the page table and all
2997 * relevant references. This includes dropping the reference the page-table
2998 * held to the old page, as well as updating the rmap.
2999 * - In any case, unlock the PTL and drop the reference we took to the old page.
3000 */
3001 ///执行写时复制
wp_page_copy(struct vm_fault * vmf)3002 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3003 {
3004 struct vm_area_struct *vma = vmf->vma;
3005 struct mm_struct *mm = vma->vm_mm;
3006 struct page *old_page = vmf->page;
3007 struct page *new_page = NULL;
3008 pte_t entry;
3009 int page_copied = 0;
3010 struct mmu_notifier_range range;
3011
3012 if (unlikely(anon_vma_prepare(vma))) ///检查VMA是否初始化了RMAP
3013 goto oom;
3014
3015 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { ///PTE如果是系统零页,分配一个内容全零的页面
3016 new_page = alloc_zeroed_user_highpage_movable(vma,
3017 vmf->address);
3018 if (!new_page)
3019 goto oom;
3020 } else {
3021 ///分配一个新物理页面,并且把old_page内容复制到new_page中
3022 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3023 vmf->address);
3024 if (!new_page)
3025 goto oom;
3026
3027 ///旧页内容复制到new_page
3028 if (!cow_user_page(new_page, old_page, vmf)) {
3029 /*
3030 * COW failed, if the fault was solved by other,
3031 * it's fine. If not, userspace would re-fault on
3032 * the same address and we will handle the fault
3033 * from the second attempt.
3034 */
3035 put_page(new_page);
3036 if (old_page)
3037 put_page(old_page);
3038 return 0;
3039 }
3040 }
3041
3042 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3043 goto oom_free_new;
3044 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3045
3046 __SetPageUptodate(new_page); ///设置PG_uptodate, 表示内容有效
3047
3048 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3049 vmf->address & PAGE_MASK,
3050 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3051 mmu_notifier_invalidate_range_start(&range);
3052
3053 /*
3054 * Re-check the pte - we dropped the lock
3055 */
3056 ///重新读取PTE,并判定是否修改
3057 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3058 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3059 if (old_page) {
3060 if (!PageAnon(old_page)) { ///如果oldpage是文件映射
3061 dec_mm_counter_fast(mm,
3062 mm_counter_file(old_page)); ///减少一个文件映射页面技术
3063 inc_mm_counter_fast(mm, MM_ANONPAGES); ///增加匿名页面计数
3064 }
3065 } else {
3066 inc_mm_counter_fast(mm, MM_ANONPAGES);
3067 }
3068 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3069 entry = mk_pte(new_page, vma->vm_page_prot);
3070 entry = pte_sw_mkyoung(entry);
3071 ///生成一个新PTE
3072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3073
3074 /*
3075 * Clear the pte entry and flush it first, before updating the
3076 * pte with the new entry, to keep TLBs on different CPUs in
3077 * sync. This code used to set the new PTE then flush TLBs, but
3078 * that left a window where the new PTE could be loaded into
3079 * some TLBs while the old PTE remains in others.
3080 */
3081 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); ///刷新这个页面的TLB
3082 page_add_new_anon_rmap(new_page, vma, vmf->address, false); ///new_page添加到RMAP系统中
3083 lru_cache_add_inactive_or_unevictable(new_page, vma); ///new_page添加到LRU链表中
3084 /*
3085 * We call the notify macro here because, when using secondary
3086 * mmu page tables (such as kvm shadow page tables), we want the
3087 * new page to be mapped directly into the secondary page table.
3088 */
3089 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); ///新pte设置到硬件PTE中
3090 update_mmu_cache(vma, vmf->address, vmf->pte);
3091 if (old_page) { ///准备释放old_page,真正释放操作在page_cache_release()函数
3092 /*
3093 * Only after switching the pte to the new page may
3094 * we remove the mapcount here. Otherwise another
3095 * process may come and find the rmap count decremented
3096 * before the pte is switched to the new page, and
3097 * "reuse" the old page writing into it while our pte
3098 * here still points into it and can be read by other
3099 * threads.
3100 *
3101 * The critical issue is to order this
3102 * page_remove_rmap with the ptp_clear_flush above.
3103 * Those stores are ordered by (if nothing else,)
3104 * the barrier present in the atomic_add_negative
3105 * in page_remove_rmap.
3106 *
3107 * Then the TLB flush in ptep_clear_flush ensures that
3108 * no process can access the old page before the
3109 * decremented mapcount is visible. And the old page
3110 * cannot be reused until after the decremented
3111 * mapcount is visible. So transitively, TLBs to
3112 * old page will be flushed before it can be reused.
3113 */
3114 page_remove_rmap(old_page, false);
3115 }
3116
3117 /* Free the old page.. */
3118 new_page = old_page;
3119 page_copied = 1;
3120 } else {
3121 update_mmu_tlb(vma, vmf->address, vmf->pte);
3122 }
3123
3124 if (new_page)
3125 put_page(new_page);
3126
3127 pte_unmap_unlock(vmf->pte, vmf->ptl);
3128 /*
3129 * No need to double call mmu_notifier->invalidate_range() callback as
3130 * the above ptep_clear_flush_notify() did already call it.
3131 */
3132 mmu_notifier_invalidate_range_only_end(&range);
3133 if (old_page) {
3134 /*
3135 * Don't let another task, with possibly unlocked vma,
3136 * keep the mlocked page.
3137 */
3138 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3139 lock_page(old_page); /* LRU manipulation */
3140 if (PageMlocked(old_page))
3141 munlock_vma_page(old_page);
3142 unlock_page(old_page);
3143 }
3144 if (page_copied)
3145 free_swap_cache(old_page);
3146 put_page(old_page);
3147 }
3148 return page_copied ? VM_FAULT_WRITE : 0;
3149 oom_free_new:
3150 put_page(new_page);
3151 oom:
3152 if (old_page)
3153 put_page(old_page);
3154 return VM_FAULT_OOM;
3155 }
3156
3157 /**
3158 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3159 * writeable once the page is prepared
3160 *
3161 * @vmf: structure describing the fault
3162 *
3163 * This function handles all that is needed to finish a write page fault in a
3164 * shared mapping due to PTE being read-only once the mapped page is prepared.
3165 * It handles locking of PTE and modifying it.
3166 *
3167 * The function expects the page to be locked or other protection against
3168 * concurrent faults / writeback (such as DAX radix tree locks).
3169 *
3170 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3171 * we acquired PTE lock.
3172 */
finish_mkwrite_fault(struct vm_fault * vmf)3173 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3174 {
3175 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3176 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3177 &vmf->ptl);
3178 /*
3179 * We might have raced with another page fault while we released the
3180 * pte_offset_map_lock.
3181 */
3182 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3183 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3184 pte_unmap_unlock(vmf->pte, vmf->ptl);
3185 return VM_FAULT_NOPAGE;
3186 }
3187 wp_page_reuse(vmf);
3188 return 0;
3189 }
3190
3191 /*
3192 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3193 * mapping
3194 */
wp_pfn_shared(struct vm_fault * vmf)3195 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3196 {
3197 struct vm_area_struct *vma = vmf->vma;
3198
3199 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3200 vm_fault_t ret;
3201
3202 pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 vmf->flags |= FAULT_FLAG_MKWRITE;
3204 ret = vma->vm_ops->pfn_mkwrite(vmf);
3205 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3206 return ret;
3207 return finish_mkwrite_fault(vmf);
3208 }
3209 wp_page_reuse(vmf);
3210 return VM_FAULT_WRITE;
3211 }
3212
wp_page_shared(struct vm_fault * vmf)3213 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3214 __releases(vmf->ptl)
3215 {
3216 struct vm_area_struct *vma = vmf->vma;
3217 vm_fault_t ret = VM_FAULT_WRITE;
3218
3219 get_page(vmf->page);
3220
3221 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3222 vm_fault_t tmp;
3223
3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
3225 tmp = do_page_mkwrite(vmf);
3226 if (unlikely(!tmp || (tmp &
3227 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3228 put_page(vmf->page);
3229 return tmp;
3230 }
3231 tmp = finish_mkwrite_fault(vmf);
3232 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3233 unlock_page(vmf->page);
3234 put_page(vmf->page);
3235 return tmp;
3236 }
3237 } else {
3238 wp_page_reuse(vmf);
3239 lock_page(vmf->page);
3240 }
3241 ret |= fault_dirty_shared_page(vmf);
3242 put_page(vmf->page);
3243
3244 return ret;
3245 }
3246
3247 /*
3248 * This routine handles present pages, when users try to write
3249 * to a shared page. It is done by copying the page to a new address
3250 * and decrementing the shared-page counter for the old page.
3251 *
3252 * Note that this routine assumes that the protection checks have been
3253 * done by the caller (the low-level page fault routine in most cases).
3254 * Thus we can safely just mark it writable once we've done any necessary
3255 * COW.
3256 *
3257 * We also mark the page dirty at this point even though the page will
3258 * change only once the write actually happens. This avoids a few races,
3259 * and potentially makes it more efficient.
3260 *
3261 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3262 * but allow concurrent faults), with pte both mapped and locked.
3263 * We return with mmap_lock still held, but pte unmapped and unlocked.
3264 */
3265 ///写时复制总入口
do_wp_page(struct vm_fault * vmf)3266 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3267 __releases(vmf->ptl)
3268 {
3269 struct vm_area_struct *vma = vmf->vma;
3270
3271 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3272 pte_unmap_unlock(vmf->pte, vmf->ptl);
3273 return handle_userfault(vmf, VM_UFFD_WP);
3274 }
3275
3276 /*
3277 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3278 * is flushed in this case before copying.
3279 */
3280 if (unlikely(userfaultfd_wp(vmf->vma) &&
3281 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3282 flush_tlb_page(vmf->vma, vmf->address);
3283
3284 ///查找缺页异常地址对应页面的page数据结构,返回为NULL,说明是一个特殊页面
3285 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3286 if (!vmf->page) { ///处理特殊页面
3287 /*
3288 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3289 * VM_PFNMAP VMA.
3290 *
3291 * We should not cow pages in a shared writeable mapping.
3292 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3293 */
3294 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3295 (VM_WRITE|VM_SHARED)) ///特殊页面,且vma是可写且共享
3296 return wp_pfn_shared(vmf); ///复用
3297
3298 pte_unmap_unlock(vmf->pte, vmf->ptl);
3299 return wp_page_copy(vmf); ///vma不是可写共享页面,写时拷贝
3300 }
3301
3302 /*
3303 * Take out anonymous pages first, anonymous shared vmas are
3304 * not dirty accountable.
3305 */
3306 if (PageAnon(vmf->page)) {///PageAnon判断是否为匿名页面
3307 struct page *page = vmf->page;
3308
3309 /* PageKsm() doesn't necessarily raise the page refcount */
3310 if (PageKsm(page) || page_count(page) != 1)
3311 goto copy;
3312 if (!trylock_page(page))
3313 goto copy;
3314 ///不是ksm页面,并且只映射单个vma
3315 ///不做写时复制,直接修改页表为可写
3316 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3317 unlock_page(page);
3318 goto copy;
3319 }
3320 /*
3321 * Ok, we've got the only map reference, and the only
3322 * page count reference, and the page is locked,
3323 * it's dark out, and we're wearing sunglasses. Hit it.
3324 */
3325 unlock_page(page);
3326 ///PageAnon判断是否为匿名页面,且不为KSM匿名页面, 单个映射, 复用
3327 wp_page_reuse(vmf);
3328 return VM_FAULT_WRITE;
3329 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3330 (VM_WRITE|VM_SHARED))) {
3331 return wp_page_shared(vmf); ///处理可写的共享页面,复用
3332 }
3333 copy:
3334 /*
3335 * Ok, we need to copy. Oh, well..
3336 */
3337 get_page(vmf->page);
3338
3339 pte_unmap_unlock(vmf->pte, vmf->ptl);
3340 return wp_page_copy(vmf); ///处理写时复制的情况
3341 }
3342
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3343 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3344 unsigned long start_addr, unsigned long end_addr,
3345 struct zap_details *details)
3346 {
3347 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3348 }
3349
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3350 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3351 struct zap_details *details)
3352 {
3353 struct vm_area_struct *vma;
3354 pgoff_t vba, vea, zba, zea;
3355
3356 vma_interval_tree_foreach(vma, root,
3357 details->first_index, details->last_index) {
3358
3359 vba = vma->vm_pgoff;
3360 vea = vba + vma_pages(vma) - 1;
3361 zba = details->first_index;
3362 if (zba < vba)
3363 zba = vba;
3364 zea = details->last_index;
3365 if (zea > vea)
3366 zea = vea;
3367
3368 unmap_mapping_range_vma(vma,
3369 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3370 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3371 details);
3372 }
3373 }
3374
3375 /**
3376 * unmap_mapping_page() - Unmap single page from processes.
3377 * @page: The locked page to be unmapped.
3378 *
3379 * Unmap this page from any userspace process which still has it mmaped.
3380 * Typically, for efficiency, the range of nearby pages has already been
3381 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3382 * truncation or invalidation holds the lock on a page, it may find that
3383 * the page has been remapped again: and then uses unmap_mapping_page()
3384 * to unmap it finally.
3385 */
unmap_mapping_page(struct page * page)3386 void unmap_mapping_page(struct page *page)
3387 {
3388 struct address_space *mapping = page->mapping;
3389 struct zap_details details = { };
3390
3391 VM_BUG_ON(!PageLocked(page));
3392 VM_BUG_ON(PageTail(page));
3393
3394 details.check_mapping = mapping;
3395 details.first_index = page->index;
3396 details.last_index = page->index + thp_nr_pages(page) - 1;
3397 details.single_page = page;
3398
3399 i_mmap_lock_write(mapping);
3400 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3401 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3402 i_mmap_unlock_write(mapping);
3403 }
3404
3405 /**
3406 * unmap_mapping_pages() - Unmap pages from processes.
3407 * @mapping: The address space containing pages to be unmapped.
3408 * @start: Index of first page to be unmapped.
3409 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3410 * @even_cows: Whether to unmap even private COWed pages.
3411 *
3412 * Unmap the pages in this address space from any userspace process which
3413 * has them mmaped. Generally, you want to remove COWed pages as well when
3414 * a file is being truncated, but not when invalidating pages from the page
3415 * cache.
3416 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3417 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3418 pgoff_t nr, bool even_cows)
3419 {
3420 struct zap_details details = { };
3421
3422 details.check_mapping = even_cows ? NULL : mapping;
3423 details.first_index = start;
3424 details.last_index = start + nr - 1;
3425 if (details.last_index < details.first_index)
3426 details.last_index = ULONG_MAX;
3427
3428 i_mmap_lock_write(mapping);
3429 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3430 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3431 i_mmap_unlock_write(mapping);
3432 }
3433 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3434
3435 /**
3436 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3437 * address_space corresponding to the specified byte range in the underlying
3438 * file.
3439 *
3440 * @mapping: the address space containing mmaps to be unmapped.
3441 * @holebegin: byte in first page to unmap, relative to the start of
3442 * the underlying file. This will be rounded down to a PAGE_SIZE
3443 * boundary. Note that this is different from truncate_pagecache(), which
3444 * must keep the partial page. In contrast, we must get rid of
3445 * partial pages.
3446 * @holelen: size of prospective hole in bytes. This will be rounded
3447 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3448 * end of the file.
3449 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3450 * but 0 when invalidating pagecache, don't throw away private data.
3451 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3452 void unmap_mapping_range(struct address_space *mapping,
3453 loff_t const holebegin, loff_t const holelen, int even_cows)
3454 {
3455 pgoff_t hba = holebegin >> PAGE_SHIFT;
3456 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3457
3458 /* Check for overflow. */
3459 if (sizeof(holelen) > sizeof(hlen)) {
3460 long long holeend =
3461 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3462 if (holeend & ~(long long)ULONG_MAX)
3463 hlen = ULONG_MAX - hba + 1;
3464 }
3465
3466 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3467 }
3468 EXPORT_SYMBOL(unmap_mapping_range);
3469
3470 /*
3471 * Restore a potential device exclusive pte to a working pte entry
3472 */
remove_device_exclusive_entry(struct vm_fault * vmf)3473 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3474 {
3475 struct page *page = vmf->page;
3476 struct vm_area_struct *vma = vmf->vma;
3477 struct mmu_notifier_range range;
3478
3479 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3480 return VM_FAULT_RETRY;
3481 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3482 vma->vm_mm, vmf->address & PAGE_MASK,
3483 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3484 mmu_notifier_invalidate_range_start(&range);
3485
3486 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3487 &vmf->ptl);
3488 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3489 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3490
3491 pte_unmap_unlock(vmf->pte, vmf->ptl);
3492 unlock_page(page);
3493
3494 mmu_notifier_invalidate_range_end(&range);
3495 return 0;
3496 }
3497
3498 /*
3499 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3500 * but allow concurrent faults), and pte mapped but not yet locked.
3501 * We return with pte unmapped and unlocked.
3502 *
3503 * We return with the mmap_lock locked or unlocked in the same cases
3504 * as does filemap_fault().
3505 */
do_swap_page(struct vm_fault * vmf)3506 vm_fault_t do_swap_page(struct vm_fault *vmf)
3507 {
3508 struct vm_area_struct *vma = vmf->vma;
3509 struct page *page = NULL, *swapcache;
3510 struct swap_info_struct *si = NULL;
3511 swp_entry_t entry;
3512 pte_t pte;
3513 int locked;
3514 int exclusive = 0;
3515 vm_fault_t ret = 0;
3516 void *shadow = NULL;
3517
3518 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3519 goto out;
3520
3521 entry = pte_to_swp_entry(vmf->orig_pte); ///获取换出页标识符
3522 if (unlikely(non_swap_entry(entry))) { ///非换出页标识符,处理迁移页面,复用swap机制
3523 if (is_migration_entry(entry)) {
3524 migration_entry_wait(vma->vm_mm, vmf->pmd,
3525 vmf->address);
3526 } else if (is_device_exclusive_entry(entry)) {
3527 vmf->page = pfn_swap_entry_to_page(entry);
3528 ret = remove_device_exclusive_entry(vmf);
3529 } else if (is_device_private_entry(entry)) {
3530 vmf->page = pfn_swap_entry_to_page(entry);
3531 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3532 } else if (is_hwpoison_entry(entry)) {
3533 ret = VM_FAULT_HWPOISON;
3534 } else {
3535 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3536 ret = VM_FAULT_SIGBUS;
3537 }
3538 goto out;
3539 }
3540
3541 /* Prevent swapoff from happening to us. */
3542 si = get_swap_device(entry);
3543 if (unlikely(!si))
3544 goto out;
3545
3546 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3547
3548 ///在swap_cache查找
3549 page = lookup_swap_cache(entry, vma, vmf->address);
3550 swapcache = page;
3551
3552 if (!page) { ///swap_cache没找到,新分配page,并加入swap_page
3553 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3554 __swap_count(entry) == 1) { ///需要启动慢速IO操作,此时根据局部性原理,还可做预取动作来优化性能
3555 /* skip swapcache */
3556 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, ///分配page
3557 vmf->address);
3558 if (page) {
3559 __SetPageLocked(page);
3560 __SetPageSwapBacked(page);
3561
3562 if (mem_cgroup_swapin_charge_page(page,
3563 vma->vm_mm, GFP_KERNEL, entry)) {
3564 ret = VM_FAULT_OOM;
3565 goto out_page;
3566 }
3567 mem_cgroup_swapin_uncharge_swap(entry);
3568
3569 shadow = get_shadow_from_swap_cache(entry);
3570 if (shadow)
3571 workingset_refault(page, shadow);
3572
3573 ///page加入swap_cache
3574 lru_cache_add(page);
3575
3576 /* To provide entry to swap_readpage() */
3577 set_page_private(page, entry.val);
3578
3579 ///从swap文件读取数据到page
3580 swap_readpage(page, true);
3581 set_page_private(page, 0);
3582 }
3583 } else {
3584 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, ///从swap文件读取数据到page
3585 vmf);
3586 swapcache = page;
3587 }
3588
3589 if (!page) {
3590 /*
3591 * Back out if somebody else faulted in this pte
3592 * while we released the pte lock.
3593 */
3594 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3595 vmf->address, &vmf->ptl);
3596 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3597 ret = VM_FAULT_OOM;
3598 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3599 goto unlock;
3600 }
3601
3602 /* Had to read the page from swap area: Major fault */
3603 ret = VM_FAULT_MAJOR; ///需要启动慢速IO操作,标记为主缺页
3604 count_vm_event(PGMAJFAULT);
3605 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3606 } else if (PageHWPoison(page)) {
3607 /*
3608 * hwpoisoned dirty swapcache pages are kept for killing
3609 * owner processes (which may be unknown at hwpoison time)
3610 */
3611 ret = VM_FAULT_HWPOISON;
3612 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3613 goto out_release;
3614 }
3615
3616 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3617
3618 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3619 if (!locked) {
3620 ret |= VM_FAULT_RETRY;
3621 goto out_release;
3622 }
3623
3624 /*
3625 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3626 * release the swapcache from under us. The page pin, and pte_same
3627 * test below, are not enough to exclude that. Even if it is still
3628 * swapcache, we need to check that the page's swap has not changed.
3629 */
3630 if (unlikely((!PageSwapCache(page) ||
3631 page_private(page) != entry.val)) && swapcache)
3632 goto out_page;
3633
3634 page = ksm_might_need_to_copy(page, vma, vmf->address);
3635 if (unlikely(!page)) {
3636 ret = VM_FAULT_OOM;
3637 page = swapcache;
3638 goto out_page;
3639 }
3640
3641 cgroup_throttle_swaprate(page, GFP_KERNEL);
3642
3643 /*
3644 * Back out if somebody else already faulted in this pte.
3645 */
3646 ///重新获取页表项
3647 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3648 &vmf->ptl);
3649 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3650 goto out_nomap;
3651
3652 if (unlikely(!PageUptodate(page))) {
3653 ret = VM_FAULT_SIGBUS;
3654 goto out_nomap;
3655 }
3656
3657 /*
3658 * The page isn't present yet, go ahead with the fault.
3659 *
3660 * Be careful about the sequence of operations here.
3661 * To get its accounting right, reuse_swap_page() must be called
3662 * while the page is counted on swap but not yet in mapcount i.e.
3663 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3664 * must be called after the swap_free(), or it will never succeed.
3665 */
3666
3667 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); ///匿页也计数增加
3668 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); ///swap页面技术减少
3669 pte = mk_pte(page, vma->vm_page_prot); ///拼接页表项
3670
3671 ///优化,reuse_swap_page,只被当前vma使用,直接改为可写,不做写时复制
3672 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3673 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3674 vmf->flags &= ~FAULT_FLAG_WRITE;
3675 ret |= VM_FAULT_WRITE;
3676 exclusive = RMAP_EXCLUSIVE;
3677 }
3678 flush_icache_page(vma, page);
3679 if (pte_swp_soft_dirty(vmf->orig_pte))
3680 pte = pte_mksoft_dirty(pte);
3681 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3682 pte = pte_mkuffd_wp(pte);
3683 pte = pte_wrprotect(pte);
3684 }
3685 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); ///填充页表
3686 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3687 vmf->orig_pte = pte;
3688
3689 /* ksm created a completely new copy */
3690 if (unlikely(page != swapcache && swapcache)) {
3691 page_add_new_anon_rmap(page, vma, vmf->address, false);
3692 lru_cache_add_inactive_or_unevictable(page, vma);
3693 } else {
3694 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); ///加入rmap
3695 }
3696
3697 swap_free(entry); ///递减交换页槽的引用计数
3698
3699 ///mem_cgroup_swap_full:交换页槽使用超过总数的1/2,或者vma被锁内存,尝试释放swap页面
3700 if (mem_cgroup_swap_full(page) ||
3701 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3702 try_to_free_swap(page); ///引用计数为0,尝试释放swap cache
3703 unlock_page(page);
3704 if (page != swapcache && swapcache) {
3705 /*
3706 * Hold the lock to avoid the swap entry to be reused
3707 * until we take the PT lock for the pte_same() check
3708 * (to avoid false positives from pte_same). For
3709 * further safety release the lock after the swap_free
3710 * so that the swap count won't change under a
3711 * parallel locked swapcache.
3712 */
3713 unlock_page(swapcache);
3714 put_page(swapcache);
3715 }
3716
3717 if (vmf->flags & FAULT_FLAG_WRITE) { ///处理私有匿名页,比如换入fork时被换出的共享只读页
3718 ret |= do_wp_page(vmf); ///写时复制
3719 if (ret & VM_FAULT_ERROR)
3720 ret &= VM_FAULT_ERROR;
3721 goto out;
3722 }
3723
3724 /* No need to invalidate - it was non-present before */
3725 update_mmu_cache(vma, vmf->address, vmf->pte);
3726 unlock:
3727 pte_unmap_unlock(vmf->pte, vmf->ptl);
3728 out:
3729 if (si)
3730 put_swap_device(si);
3731 return ret;
3732 out_nomap:
3733 pte_unmap_unlock(vmf->pte, vmf->ptl);
3734 out_page:
3735 unlock_page(page);
3736 out_release:
3737 put_page(page);
3738 if (page != swapcache && swapcache) {
3739 unlock_page(swapcache);
3740 put_page(swapcache);
3741 }
3742 if (si)
3743 put_swap_device(si);
3744 return ret;
3745 }
3746
3747 /*
3748 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3749 * but allow concurrent faults), and pte mapped but not yet locked.
3750 * We return with mmap_lock still held, but pte unmapped and unlocked.
3751 */
do_anonymous_page(struct vm_fault * vmf)3752 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3753 {
3754 struct vm_area_struct *vma = vmf->vma;
3755 struct page *page;
3756 vm_fault_t ret = 0;
3757 pte_t entry;
3758
3759 /* File mapping without ->vm_ops ? */
3760 ///防止共享的vma进入匿名页面的缺页中断,本函数只处理私有匿名映射
3761 if (vma->vm_flags & VM_SHARED)
3762 return VM_FAULT_SIGBUS;
3763
3764 /*
3765 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3766 * pte_offset_map() on pmds where a huge pmd might be created
3767 * from a different thread.
3768 *
3769 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3770 * parallel threads are excluded by other means.
3771 *
3772 * Here we only have mmap_read_lock(mm).
3773 */
3774 ///分配pte页表并填充到pmd
3775 if (pte_alloc(vma->vm_mm, vmf->pmd))
3776 return VM_FAULT_OOM;
3777
3778 /* See comment in handle_pte_fault() */
3779 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3780 return 0;
3781
3782 ///处理分配页面只读情况,系统返回零页
3783 /* Use the zero-page for reads */
3784 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3785 !mm_forbids_zeropage(vma->vm_mm)) {
3786 ///my_zero_pfn获取零页的页帧号
3787 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3788 vma->vm_page_prot));
3789
3790 ///获取pte页表项,同时获取锁保护
3791 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3792 vmf->address, &vmf->ptl);
3793 if (!pte_none(*vmf->pte)) {
3794 update_mmu_tlb(vma, vmf->address, vmf->pte);
3795 goto unlock;
3796 }
3797 ret = check_stable_address_space(vma->vm_mm);
3798 if (ret)
3799 goto unlock;
3800 /* Deliver the page fault to userland, check inside PT lock */
3801 if (userfaultfd_missing(vma)) {
3802 pte_unmap_unlock(vmf->pte, vmf->ptl);
3803 return handle_userfault(vmf, VM_UFFD_MISSING);
3804 }
3805 goto setpte; ///写情况处理完,跳转setpte
3806 }
3807
3808 ///处理vma可写情况
3809 /* Allocate our own private page. */
3810 ///为建立rmap做准备
3811 if (unlikely(anon_vma_prepare(vma)))
3812 goto oom;
3813 ///分配一个可移动的匿名物理页面,优先使用高端内存(arm64不存在高端内存)
3814 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3815 if (!page)
3816 goto oom;
3817
3818 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3819 goto oom_free_page;
3820 cgroup_throttle_swaprate(page, GFP_KERNEL);
3821
3822 /*
3823 * The memory barrier inside __SetPageUptodate makes sure that
3824 * preceding stores to the page contents become visible before
3825 * the set_pte_at() write.
3826 */
3827 __SetPageUptodate(page); ///添加内存屏障
3828
3829 entry = mk_pte(page, vma->vm_page_prot); ///创建一个pte页表项
3830 entry = pte_sw_mkyoung(entry);
3831 if (vma->vm_flags & VM_WRITE)
3832 entry = pte_mkwrite(pte_mkdirty(entry)); ///设置可写标记
3833
3834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, ///获取pte页表项,并获得自旋锁,保证不被锁和打断
3835 &vmf->ptl);
3836 if (!pte_none(*vmf->pte)) {
3837 update_mmu_cache(vma, vmf->address, vmf->pte);
3838 goto release;
3839 }
3840
3841 ret = check_stable_address_space(vma->vm_mm);
3842 if (ret)
3843 goto release;
3844
3845 /* Deliver the page fault to userland, check inside PT lock */
3846 if (userfaultfd_missing(vma)) {
3847 pte_unmap_unlock(vmf->pte, vmf->ptl);
3848 put_page(page);
3849 return handle_userfault(vmf, VM_UFFD_MISSING);
3850 }
3851
3852 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); ///增加进程匿名页计数
3853 page_add_new_anon_rmap(page, vma, vmf->address, false); ///匿名页面添加到rmap系统
3854 lru_cache_add_inactive_or_unevictable(page, vma); ///匿名页面添加到lru
3855 setpte:
3856 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); ///填写页表项到硬件页表
3857
3858 /* No need to invalidate - it was non-present before */
3859 update_mmu_cache(vma, vmf->address, vmf->pte);
3860 unlock:
3861 pte_unmap_unlock(vmf->pte, vmf->ptl);
3862 return ret;
3863 release:
3864 put_page(page);
3865 goto unlock;
3866 oom_free_page:
3867 put_page(page);
3868 oom:
3869 return VM_FAULT_OOM;
3870 }
3871
3872 /*
3873 * The mmap_lock must have been held on entry, and may have been
3874 * released depending on flags and vma->vm_ops->fault() return value.
3875 * See filemap_fault() and __lock_page_retry().
3876 */
__do_fault(struct vm_fault * vmf)3877 static vm_fault_t __do_fault(struct vm_fault *vmf)
3878 {
3879 struct vm_area_struct *vma = vmf->vma;
3880 vm_fault_t ret;
3881
3882 /*
3883 * Preallocate pte before we take page_lock because this might lead to
3884 * deadlocks for memcg reclaim which waits for pages under writeback:
3885 * lock_page(A)
3886 * SetPageWriteback(A)
3887 * unlock_page(A)
3888 * lock_page(B)
3889 * lock_page(B)
3890 * pte_alloc_one
3891 * shrink_page_list
3892 * wait_on_page_writeback(A)
3893 * SetPageWriteback(B)
3894 * unlock_page(B)
3895 * # flush A, B to clear the writeback
3896 */
3897 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { ///先分配pte
3898 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3899 if (!vmf->prealloc_pte)
3900 return VM_FAULT_OOM;
3901 smp_wmb(); /* See comment in __pte_alloc() */
3902 }
3903
3904 ///读文件内容到pagecache中, vma操作函数,比如ext4:filemap_fault
3905 ret = vma->vm_ops->fault(vmf);
3906 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3907 VM_FAULT_DONE_COW)))
3908 return ret;
3909
3910 if (unlikely(PageHWPoison(vmf->page))) {
3911 if (ret & VM_FAULT_LOCKED)
3912 unlock_page(vmf->page);
3913 put_page(vmf->page);
3914 vmf->page = NULL;
3915 return VM_FAULT_HWPOISON;
3916 }
3917
3918 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3919 lock_page(vmf->page);
3920 else
3921 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3922
3923 return ret;
3924 }
3925
3926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)3927 static void deposit_prealloc_pte(struct vm_fault *vmf)
3928 {
3929 struct vm_area_struct *vma = vmf->vma;
3930
3931 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3932 /*
3933 * We are going to consume the prealloc table,
3934 * count that as nr_ptes.
3935 */
3936 mm_inc_nr_ptes(vma->vm_mm);
3937 vmf->prealloc_pte = NULL;
3938 }
3939
do_set_pmd(struct vm_fault * vmf,struct page * page)3940 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3941 {
3942 struct vm_area_struct *vma = vmf->vma;
3943 bool write = vmf->flags & FAULT_FLAG_WRITE;
3944 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3945 pmd_t entry;
3946 int i;
3947 vm_fault_t ret = VM_FAULT_FALLBACK;
3948
3949 if (!transhuge_vma_suitable(vma, haddr))
3950 return ret;
3951
3952 page = compound_head(page);
3953 if (compound_order(page) != HPAGE_PMD_ORDER)
3954 return ret;
3955
3956 /*
3957 * Just backoff if any subpage of a THP is corrupted otherwise
3958 * the corrupted page may mapped by PMD silently to escape the
3959 * check. This kind of THP just can be PTE mapped. Access to
3960 * the corrupted subpage should trigger SIGBUS as expected.
3961 */
3962 if (unlikely(PageHasHWPoisoned(page)))
3963 return ret;
3964
3965 /*
3966 * Archs like ppc64 need additional space to store information
3967 * related to pte entry. Use the preallocated table for that.
3968 */
3969 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3970 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3971 if (!vmf->prealloc_pte)
3972 return VM_FAULT_OOM;
3973 smp_wmb(); /* See comment in __pte_alloc() */
3974 }
3975
3976 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3977 if (unlikely(!pmd_none(*vmf->pmd)))
3978 goto out;
3979
3980 for (i = 0; i < HPAGE_PMD_NR; i++)
3981 flush_icache_page(vma, page + i);
3982
3983 entry = mk_huge_pmd(page, vma->vm_page_prot);
3984 if (write)
3985 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3986
3987 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3988 page_add_file_rmap(page, true);
3989 /*
3990 * deposit and withdraw with pmd lock held
3991 */
3992 if (arch_needs_pgtable_deposit())
3993 deposit_prealloc_pte(vmf);
3994
3995 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3996
3997 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3998
3999 /* fault is handled */
4000 ret = 0;
4001 count_vm_event(THP_FILE_MAPPED);
4002 out:
4003 spin_unlock(vmf->ptl);
4004 return ret;
4005 }
4006 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4007 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4008 {
4009 return VM_FAULT_FALLBACK;
4010 }
4011 #endif
4012
do_set_pte(struct vm_fault * vmf,struct page * page,unsigned long addr)4013 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4014 {
4015 struct vm_area_struct *vma = vmf->vma;
4016 bool write = vmf->flags & FAULT_FLAG_WRITE;
4017 bool prefault = vmf->address != addr;
4018 pte_t entry;
4019
4020 flush_icache_page(vma, page);
4021 entry = mk_pte(page, vma->vm_page_prot);
4022
4023 if (prefault && arch_wants_old_prefaulted_pte())
4024 entry = pte_mkold(entry);
4025 else
4026 entry = pte_sw_mkyoung(entry);
4027
4028 if (write)
4029 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4030 /* copy-on-write page */
4031 if (write && !(vma->vm_flags & VM_SHARED)) {
4032 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4033 page_add_new_anon_rmap(page, vma, addr, false);
4034 lru_cache_add_inactive_or_unevictable(page, vma);
4035 } else {
4036 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4037 page_add_file_rmap(page, false);
4038 }
4039 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4040 }
4041
4042 /**
4043 * finish_fault - finish page fault once we have prepared the page to fault
4044 *
4045 * @vmf: structure describing the fault
4046 *
4047 * This function handles all that is needed to finish a page fault once the
4048 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4049 * given page, adds reverse page mapping, handles memcg charges and LRU
4050 * addition.
4051 *
4052 * The function expects the page to be locked and on success it consumes a
4053 * reference of a page being mapped (for the PTE which maps it).
4054 *
4055 * Return: %0 on success, %VM_FAULT_ code in case of error.
4056 */
finish_fault(struct vm_fault * vmf)4057 vm_fault_t finish_fault(struct vm_fault *vmf)
4058 {
4059 struct vm_area_struct *vma = vmf->vma;
4060 struct page *page;
4061 vm_fault_t ret;
4062
4063 /* Did we COW the page? */
4064 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4065 page = vmf->cow_page; ///可写,获取写时复制页
4066 else
4067 page = vmf->page; ///读,获取page页
4068
4069 /*
4070 * check even for read faults because we might have lost our CoWed
4071 * page
4072 */
4073 if (!(vma->vm_flags & VM_SHARED)) {
4074 ret = check_stable_address_space(vma->vm_mm);
4075 if (ret)
4076 return ret;
4077 }
4078
4079 if (pmd_none(*vmf->pmd)) {
4080 if (PageTransCompound(page)) {
4081 ret = do_set_pmd(vmf, page);
4082 if (ret != VM_FAULT_FALLBACK)
4083 return ret;
4084 }
4085
4086 if (vmf->prealloc_pte) {
4087 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4088 if (likely(pmd_none(*vmf->pmd))) {
4089 mm_inc_nr_ptes(vma->vm_mm);
4090 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4091 vmf->prealloc_pte = NULL;
4092 }
4093 spin_unlock(vmf->ptl);
4094 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4095 return VM_FAULT_OOM;
4096 }
4097 }
4098
4099 /* See comment in handle_pte_fault() */
4100 if (pmd_devmap_trans_unstable(vmf->pmd))
4101 return 0;
4102
4103 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, ///获取pte页表项
4104 vmf->address, &vmf->ptl);
4105 ret = 0;
4106 /* Re-check under ptl */
4107 if (likely(pte_none(*vmf->pte)))
4108 do_set_pte(vmf, page, vmf->address); ///设置页表项,建立映射
4109 else
4110 ret = VM_FAULT_NOPAGE;
4111
4112 update_mmu_tlb(vma, vmf->address, vmf->pte);
4113 pte_unmap_unlock(vmf->pte, vmf->ptl);
4114 return ret;
4115 }
4116
4117 static unsigned long fault_around_bytes __read_mostly =
4118 rounddown_pow_of_two(65536);
4119
4120 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4121 static int fault_around_bytes_get(void *data, u64 *val)
4122 {
4123 *val = fault_around_bytes;
4124 return 0;
4125 }
4126
4127 /*
4128 * fault_around_bytes must be rounded down to the nearest page order as it's
4129 * what do_fault_around() expects to see.
4130 */
fault_around_bytes_set(void * data,u64 val)4131 static int fault_around_bytes_set(void *data, u64 val)
4132 {
4133 if (val / PAGE_SIZE > PTRS_PER_PTE)
4134 return -EINVAL;
4135 if (val > PAGE_SIZE)
4136 fault_around_bytes = rounddown_pow_of_two(val);
4137 else
4138 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4139 return 0;
4140 }
4141 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4142 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4143
fault_around_debugfs(void)4144 static int __init fault_around_debugfs(void)
4145 {
4146 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4147 &fault_around_bytes_fops);
4148 return 0;
4149 }
4150 late_initcall(fault_around_debugfs);
4151 #endif
4152
4153 /*
4154 * do_fault_around() tries to map few pages around the fault address. The hope
4155 * is that the pages will be needed soon and this will lower the number of
4156 * faults to handle.
4157 *
4158 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4159 * not ready to be mapped: not up-to-date, locked, etc.
4160 *
4161 * This function is called with the page table lock taken. In the split ptlock
4162 * case the page table lock only protects only those entries which belong to
4163 * the page table corresponding to the fault address.
4164 *
4165 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4166 * only once.
4167 *
4168 * fault_around_bytes defines how many bytes we'll try to map.
4169 * do_fault_around() expects it to be set to a power of two less than or equal
4170 * to PTRS_PER_PTE.
4171 *
4172 * The virtual address of the area that we map is naturally aligned to
4173 * fault_around_bytes rounded down to the machine page size
4174 * (and therefore to page order). This way it's easier to guarantee
4175 * that we don't cross page table boundaries.
4176 */
do_fault_around(struct vm_fault * vmf)4177 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4178 {
4179 unsigned long address = vmf->address, nr_pages, mask;
4180 pgoff_t start_pgoff = vmf->pgoff;
4181 pgoff_t end_pgoff;
4182 int off;
4183
4184 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4185 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4186
4187 address = max(address & mask, vmf->vma->vm_start);
4188 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4189 start_pgoff -= off;
4190
4191 /*
4192 * end_pgoff is either the end of the page table, the end of
4193 * the vma or nr_pages from start_pgoff, depending what is nearest.
4194 */
4195 end_pgoff = start_pgoff -
4196 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4197 PTRS_PER_PTE - 1;
4198 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4199 start_pgoff + nr_pages - 1);
4200
4201 if (pmd_none(*vmf->pmd)) {
4202 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4203 if (!vmf->prealloc_pte)
4204 return VM_FAULT_OOM;
4205 smp_wmb(); /* See comment in __pte_alloc() */
4206 }
4207
4208 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); ///建立,现存高速缓存页面到虚拟地址的映射
4209 }
4210
4211 ///读文件页,缺页异常, pte不存在
do_read_fault(struct vm_fault * vmf)4212 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4213 {
4214 struct vm_area_struct *vma = vmf->vma;
4215 vm_fault_t ret = 0;
4216
4217 /*
4218 * Let's call ->map_pages() first and use ->fault() as fallback
4219 * if page by the offset is not ready to be mapped (cold cache or
4220 * something).
4221 */
4222 ///如果定义了map_pages,将异常地址附近的页尽可能多的与高速缓存建立映射(只针对现存的页面缓存,不创建页面!)
4223 ///预估异常地址附近页面高速缓存,可能很快会被读到
4224 /////fault_around_bytes默认16页
4225 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4226 if (likely(!userfaultfd_minor(vmf->vma))) {
4227 ret = do_fault_around(vmf);
4228 if (ret)
4229 return ret;
4230 }
4231 }
4232
4233 ret = __do_fault(vmf); ///创建新的高速缓存,并将文件内容读到缓存
4234 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4235 return ret;
4236
4237 ret |= finish_fault(vmf); ///填写表项,建立映射
4238 unlock_page(vmf->page);
4239 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4240 put_page(vmf->page);
4241 return ret;
4242 }
4243
do_cow_fault(struct vm_fault * vmf)4244 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4245 {
4246 struct vm_area_struct *vma = vmf->vma;
4247 vm_fault_t ret;
4248
4249 if (unlikely(anon_vma_prepare(vma))) ///检查该vma是否初始化了RMAP
4250 return VM_FAULT_OOM;
4251
4252 ///分配一个物理页面,优先使用高端内存
4253 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4254 if (!vmf->cow_page)
4255 return VM_FAULT_OOM;
4256
4257 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4258 put_page(vmf->cow_page);
4259 return VM_FAULT_OOM;
4260 }
4261 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4262
4263 ret = __do_fault(vmf); ///读取文件内容到vmf->page
4264 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4265 goto uncharge_out;
4266 if (ret & VM_FAULT_DONE_COW)
4267 return ret;
4268
4269 ///把vmf->page的内容复制到刚分配的cow_page
4270 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4271 __SetPageUptodate(vmf->cow_page);
4272
4273 ret |= finish_fault(vmf); ///使用vmf->cow_page制作PTE,设置到物理页面,建立映射,并添加到RMAP机制
4274 unlock_page(vmf->page);
4275 put_page(vmf->page);
4276 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4277 goto uncharge_out;
4278 return ret;
4279 uncharge_out:
4280 put_page(vmf->cow_page);
4281 return ret;
4282 }
4283
do_shared_fault(struct vm_fault * vmf)4284 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4285 {
4286 struct vm_area_struct *vma = vmf->vma;
4287 vm_fault_t ret, tmp;
4288
4289 ret = __do_fault(vmf); ///读取文件内容到vmf->page
4290 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4291 return ret;
4292
4293 /*
4294 * Check if the backing address space wants to know that the page is
4295 * about to become writable
4296 */ ///若定义了page_mkwrite,调用do_page_mkwrite通知进程地址空间,页面变成可写;若页面可写,进程需要等待这个页面的内容回写成功
4297 if (vma->vm_ops->page_mkwrite) {
4298 unlock_page(vmf->page);
4299 tmp = do_page_mkwrite(vmf);
4300 if (unlikely(!tmp ||
4301 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4302 put_page(vmf->page);
4303 return tmp;
4304 }
4305 }
4306
4307 ret |= finish_fault(vmf); ///使用vmf->page制作PTE,设置到物理页面,建立映射,并添加到RMAP机制
4308 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4309 VM_FAULT_RETRY))) {
4310 unlock_page(vmf->page);
4311 put_page(vmf->page);
4312 return ret;
4313 }
4314
4315 ret |= fault_dirty_shared_page(vmf); ///设置脏页,回写部分脏页
4316 return ret;
4317 }
4318
4319 /*
4320 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4321 * but allow concurrent faults).
4322 * The mmap_lock may have been released depending on flags and our
4323 * return value. See filemap_fault() and __lock_page_or_retry().
4324 * If mmap_lock is released, vma may become invalid (for example
4325 * by other thread calling munmap()).
4326 */
do_fault(struct vm_fault * vmf)4327 static vm_fault_t do_fault(struct vm_fault *vmf)
4328 {
4329 struct vm_area_struct *vma = vmf->vma;
4330 struct mm_struct *vm_mm = vma->vm_mm;
4331 vm_fault_t ret;
4332
4333 /*
4334 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4335 */
4336 if (!vma->vm_ops->fault) { ///处理没有实现fault()回调函数的情况,各种出错处理
4337 /*
4338 * If we find a migration pmd entry or a none pmd entry, which
4339 * should never happen, return SIGBUS
4340 */
4341 if (unlikely(!pmd_present(*vmf->pmd)))
4342 ret = VM_FAULT_SIGBUS;
4343 else {
4344 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4345 vmf->pmd,
4346 vmf->address,
4347 &vmf->ptl);
4348 /*
4349 * Make sure this is not a temporary clearing of pte
4350 * by holding ptl and checking again. A R/M/W update
4351 * of pte involves: take ptl, clearing the pte so that
4352 * we don't have concurrent modification by hardware
4353 * followed by an update.
4354 */
4355 if (unlikely(pte_none(*vmf->pte)))
4356 ret = VM_FAULT_SIGBUS; ///发现pte无效
4357 else
4358 ret = VM_FAULT_NOPAGE; ///pte有效,表示本次缺页异常不需要返回一个新页面
4359
4360 pte_unmap_unlock(vmf->pte, vmf->ptl);
4361 }
4362 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4363 ret = do_read_fault(vmf); ///flags标记本次缺页异常由读内存引起
4364 else if (!(vma->vm_flags & VM_SHARED))
4365 ret = do_cow_fault(vmf); ///写内存引起,且为私有
4366 else
4367 ret = do_shared_fault(vmf); ///写内存引起,且为共享
4368
4369 /* preallocated pagetable is unused: free it */
4370 if (vmf->prealloc_pte) { ///释放prealloc_pte
4371 pte_free(vm_mm, vmf->prealloc_pte);
4372 vmf->prealloc_pte = NULL;
4373 }
4374 return ret;
4375 }
4376
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4377 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4378 unsigned long addr, int page_nid, int *flags)
4379 {
4380 get_page(page);
4381
4382 count_vm_numa_event(NUMA_HINT_FAULTS);
4383 if (page_nid == numa_node_id()) {
4384 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4385 *flags |= TNF_FAULT_LOCAL;
4386 }
4387
4388 return mpol_misplaced(page, vma, addr);
4389 }
4390
do_numa_page(struct vm_fault * vmf)4391 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4392 {
4393 struct vm_area_struct *vma = vmf->vma;
4394 struct page *page = NULL;
4395 int page_nid = NUMA_NO_NODE;
4396 int last_cpupid;
4397 int target_nid;
4398 pte_t pte, old_pte;
4399 bool was_writable = pte_savedwrite(vmf->orig_pte);
4400 int flags = 0;
4401
4402 /*
4403 * The "pte" at this point cannot be used safely without
4404 * validation through pte_unmap_same(). It's of NUMA type but
4405 * the pfn may be screwed if the read is non atomic.
4406 */
4407 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4408 spin_lock(vmf->ptl);
4409 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4410 pte_unmap_unlock(vmf->pte, vmf->ptl);
4411 goto out;
4412 }
4413
4414 /* Get the normal PTE */
4415 old_pte = ptep_get(vmf->pte);
4416 pte = pte_modify(old_pte, vma->vm_page_prot);
4417
4418 page = vm_normal_page(vma, vmf->address, pte);
4419 if (!page)
4420 goto out_map;
4421
4422 /* TODO: handle PTE-mapped THP */
4423 if (PageCompound(page))
4424 goto out_map;
4425
4426 /*
4427 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4428 * much anyway since they can be in shared cache state. This misses
4429 * the case where a mapping is writable but the process never writes
4430 * to it but pte_write gets cleared during protection updates and
4431 * pte_dirty has unpredictable behaviour between PTE scan updates,
4432 * background writeback, dirty balancing and application behaviour.
4433 */
4434 if (!was_writable)
4435 flags |= TNF_NO_GROUP;
4436
4437 /*
4438 * Flag if the page is shared between multiple address spaces. This
4439 * is later used when determining whether to group tasks together
4440 */
4441 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4442 flags |= TNF_SHARED;
4443
4444 last_cpupid = page_cpupid_last(page);
4445 page_nid = page_to_nid(page);
4446 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4447 &flags);
4448 if (target_nid == NUMA_NO_NODE) {
4449 put_page(page);
4450 goto out_map;
4451 }
4452 pte_unmap_unlock(vmf->pte, vmf->ptl);
4453
4454 /* Migrate to the requested node */
4455 if (migrate_misplaced_page(page, vma, target_nid)) {
4456 page_nid = target_nid;
4457 flags |= TNF_MIGRATED;
4458 } else {
4459 flags |= TNF_MIGRATE_FAIL;
4460 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4461 spin_lock(vmf->ptl);
4462 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4463 pte_unmap_unlock(vmf->pte, vmf->ptl);
4464 goto out;
4465 }
4466 goto out_map;
4467 }
4468
4469 out:
4470 if (page_nid != NUMA_NO_NODE)
4471 task_numa_fault(last_cpupid, page_nid, 1, flags);
4472 return 0;
4473 out_map:
4474 /*
4475 * Make it present again, depending on how arch implements
4476 * non-accessible ptes, some can allow access by kernel mode.
4477 */
4478 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4479 pte = pte_modify(old_pte, vma->vm_page_prot);
4480 pte = pte_mkyoung(pte);
4481 if (was_writable)
4482 pte = pte_mkwrite(pte);
4483 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4484 update_mmu_cache(vma, vmf->address, vmf->pte);
4485 pte_unmap_unlock(vmf->pte, vmf->ptl);
4486 goto out;
4487 }
4488
create_huge_pmd(struct vm_fault * vmf)4489 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4490 {
4491 if (vma_is_anonymous(vmf->vma))
4492 return do_huge_pmd_anonymous_page(vmf);
4493 if (vmf->vma->vm_ops->huge_fault)
4494 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4495 return VM_FAULT_FALLBACK;
4496 }
4497
4498 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4499 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4500 {
4501 if (vma_is_anonymous(vmf->vma)) {
4502 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4503 return handle_userfault(vmf, VM_UFFD_WP);
4504 return do_huge_pmd_wp_page(vmf);
4505 }
4506 if (vmf->vma->vm_ops->huge_fault) {
4507 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4508
4509 if (!(ret & VM_FAULT_FALLBACK))
4510 return ret;
4511 }
4512
4513 /* COW or write-notify handled on pte level: split pmd. */
4514 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4515
4516 return VM_FAULT_FALLBACK;
4517 }
4518
create_huge_pud(struct vm_fault * vmf)4519 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4520 {
4521 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4522 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4523 /* No support for anonymous transparent PUD pages yet */
4524 if (vma_is_anonymous(vmf->vma))
4525 goto split;
4526 if (vmf->vma->vm_ops->huge_fault) {
4527 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4528
4529 if (!(ret & VM_FAULT_FALLBACK))
4530 return ret;
4531 }
4532 split:
4533 /* COW or write-notify not handled on PUD level: split pud.*/
4534 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4535 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4536 return VM_FAULT_FALLBACK;
4537 }
4538
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4539 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4540 {
4541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4542 /* No support for anonymous transparent PUD pages yet */
4543 if (vma_is_anonymous(vmf->vma))
4544 return VM_FAULT_FALLBACK;
4545 if (vmf->vma->vm_ops->huge_fault)
4546 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4548 return VM_FAULT_FALLBACK;
4549 }
4550
4551 /*
4552 * These routines also need to handle stuff like marking pages dirty
4553 * and/or accessed for architectures that don't do it in hardware (most
4554 * RISC architectures). The early dirtying is also good on the i386.
4555 *
4556 * There is also a hook called "update_mmu_cache()" that architectures
4557 * with external mmu caches can use to update those (ie the Sparc or
4558 * PowerPC hashed page tables that act as extended TLBs).
4559 *
4560 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4561 * concurrent faults).
4562 *
4563 * The mmap_lock may have been released depending on flags and our return value.
4564 * See filemap_fault() and __lock_page_or_retry().
4565 */
4566 ///缺页异常通用部分代码
handle_pte_fault(struct vm_fault * vmf)4567 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4568 {
4569 pte_t entry;
4570
4571 if (unlikely(pmd_none(*vmf->pmd))) {
4572 /*
4573 * Leave __pte_alloc() until later: because vm_ops->fault may
4574 * want to allocate huge page, and if we expose page table
4575 * for an instant, it will be difficult to retract from
4576 * concurrent faults and from rmap lookups.
4577 */
4578 vmf->pte = NULL;
4579 } else {
4580 /*
4581 * If a huge pmd materialized under us just retry later. Use
4582 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4583 * of pmd_trans_huge() to ensure the pmd didn't become
4584 * pmd_trans_huge under us and then back to pmd_none, as a
4585 * result of MADV_DONTNEED running immediately after a huge pmd
4586 * fault in a different thread of this mm, in turn leading to a
4587 * misleading pmd_trans_huge() retval. All we have to ensure is
4588 * that it is a regular pmd that we can walk with
4589 * pte_offset_map() and we can do that through an atomic read
4590 * in C, which is what pmd_trans_unstable() provides.
4591 */
4592 if (pmd_devmap_trans_unstable(vmf->pmd))
4593 return 0;
4594 /*
4595 * A regular pmd is established and it can't morph into a huge
4596 * pmd from under us anymore at this point because we hold the
4597 * mmap_lock read mode and khugepaged takes it in write mode.
4598 * So now it's safe to run pte_offset_map().
4599 */
4600 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); ///计算pte页表项
4601 vmf->orig_pte = *vmf->pte; ///读取pte内容到vmf->orig_pte
4602
4603 /*
4604 * some architectures can have larger ptes than wordsize,
4605 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4606 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4607 * accesses. The code below just needs a consistent view
4608 * for the ifs and we later double check anyway with the
4609 * ptl lock held. So here a barrier will do.
4610 */
4611 barrier(); ///有的处理器PTE会大于字长,所以READ_ONCE()不能保证原子性,添加内存屏障以保证正确读取了PTE内容
4612 if (pte_none(vmf->orig_pte)) {
4613 pte_unmap(vmf->pte);
4614 vmf->pte = NULL;
4615 }
4616 }
4617
4618 ///pte为空
4619 if (!vmf->pte) {
4620 if (vma_is_anonymous(vmf->vma))
4621 return do_anonymous_page(vmf); ///处理匿名映射
4622 else
4623 return do_fault(vmf); ///文件映射
4624 }
4625
4626 ///pte不为空
4627 if (!pte_present(vmf->orig_pte)) ///pte存在,但是不在内存中,从交换分区读回页面
4628 return do_swap_page(vmf);
4629
4630 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) ///处理numa调度页面
4631 return do_numa_page(vmf);
4632
4633 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4634 spin_lock(vmf->ptl);
4635 entry = vmf->orig_pte;
4636 if (unlikely(!pte_same(*vmf->pte, entry))) {
4637 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4638 goto unlock;
4639 }
4640 if (vmf->flags & FAULT_FLAG_WRITE) { ///FAULT_FLAG_WRITE标志,根据ESR_ELx_WnR设置
4641 if (!pte_write(entry))
4642 return do_wp_page(vmf); ///vma可写,pte只读,触发缺页异常,父子进程共享的内存,写时复制
4643 entry = pte_mkdirty(entry);
4644 }
4645 entry = pte_mkyoung(entry); ///访问标志位错误,设置PTE_AF位
4646 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, ///更新PTE和缓存
4647 vmf->flags & FAULT_FLAG_WRITE)) {
4648 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4649 } else {
4650 /* Skip spurious TLB flush for retried page fault */
4651 if (vmf->flags & FAULT_FLAG_TRIED)
4652 goto unlock;
4653 /*
4654 * This is needed only for protection faults but the arch code
4655 * is not yet telling us if this is a protection fault or not.
4656 * This still avoids useless tlb flushes for .text page faults
4657 * with threads.
4658 */
4659 if (vmf->flags & FAULT_FLAG_WRITE)
4660 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4661 }
4662 unlock:
4663 pte_unmap_unlock(vmf->pte, vmf->ptl);
4664 return 0;
4665 }
4666
4667 /*
4668 * By the time we get here, we already hold the mm semaphore
4669 *
4670 * The mmap_lock may have been released depending on flags and our
4671 * return value. See filemap_fault() and __lock_page_or_retry().
4672 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4673 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4674 unsigned long address, unsigned int flags)
4675 {
4676 struct vm_fault vmf = { ///构建vma描述结构体
4677 .vma = vma,
4678 .address = address & PAGE_MASK,
4679 .flags = flags,
4680 .pgoff = linear_page_index(vma, address),
4681 .gfp_mask = __get_fault_gfp_mask(vma),
4682 };
4683 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4684 struct mm_struct *mm = vma->vm_mm;
4685 pgd_t *pgd;
4686 p4d_t *p4d;
4687 vm_fault_t ret;
4688
4689 pgd = pgd_offset(mm, address); ///计算pgd页表项
4690 p4d = p4d_alloc(mm, pgd, address); ///计算p4d页表项,这里等于pgd
4691 if (!p4d)
4692 return VM_FAULT_OOM;
4693
4694 vmf.pud = pud_alloc(mm, p4d, address); ///计算pud页表项
4695 if (!vmf.pud)
4696 return VM_FAULT_OOM;
4697 retry_pud:
4698 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4699 ret = create_huge_pud(&vmf);
4700 if (!(ret & VM_FAULT_FALLBACK))
4701 return ret;
4702 } else {
4703 pud_t orig_pud = *vmf.pud;
4704
4705 barrier();
4706 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4707
4708 /* NUMA case for anonymous PUDs would go here */
4709
4710 if (dirty && !pud_write(orig_pud)) {
4711 ret = wp_huge_pud(&vmf, orig_pud);
4712 if (!(ret & VM_FAULT_FALLBACK))
4713 return ret;
4714 } else {
4715 huge_pud_set_accessed(&vmf, orig_pud);
4716 return 0;
4717 }
4718 }
4719 }
4720
4721 vmf.pmd = pmd_alloc(mm, vmf.pud, address); ///计算pmd页表项
4722 if (!vmf.pmd)
4723 return VM_FAULT_OOM;
4724
4725 /* Huge pud page fault raced with pmd_alloc? */
4726 if (pud_trans_unstable(vmf.pud))
4727 goto retry_pud;
4728
4729 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4730 ret = create_huge_pmd(&vmf);
4731 if (!(ret & VM_FAULT_FALLBACK))
4732 return ret;
4733 } else {
4734 vmf.orig_pmd = *vmf.pmd;
4735
4736 barrier();
4737 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4738 VM_BUG_ON(thp_migration_supported() &&
4739 !is_pmd_migration_entry(vmf.orig_pmd));
4740 if (is_pmd_migration_entry(vmf.orig_pmd))
4741 pmd_migration_entry_wait(mm, vmf.pmd);
4742 return 0;
4743 }
4744 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4745 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4746 return do_huge_pmd_numa_page(&vmf);
4747
4748 if (dirty && !pmd_write(vmf.orig_pmd)) {
4749 ret = wp_huge_pmd(&vmf);
4750 if (!(ret & VM_FAULT_FALLBACK))
4751 return ret;
4752 } else {
4753 huge_pmd_set_accessed(&vmf);
4754 return 0;
4755 }
4756 }
4757 }
4758
4759 return handle_pte_fault(&vmf); ///进入通用代码处理
4760 }
4761
4762 /**
4763 * mm_account_fault - Do page fault accounting
4764 *
4765 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4766 * of perf event counters, but we'll still do the per-task accounting to
4767 * the task who triggered this page fault.
4768 * @address: the faulted address.
4769 * @flags: the fault flags.
4770 * @ret: the fault retcode.
4771 *
4772 * This will take care of most of the page fault accounting. Meanwhile, it
4773 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4774 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4775 * still be in per-arch page fault handlers at the entry of page fault.
4776 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4777 static inline void mm_account_fault(struct pt_regs *regs,
4778 unsigned long address, unsigned int flags,
4779 vm_fault_t ret)
4780 {
4781 bool major;
4782
4783 /*
4784 * We don't do accounting for some specific faults:
4785 *
4786 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4787 * includes arch_vma_access_permitted() failing before reaching here.
4788 * So this is not a "this many hardware page faults" counter. We
4789 * should use the hw profiling for that.
4790 *
4791 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4792 * once they're completed.
4793 */
4794 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4795 return;
4796
4797 /*
4798 * We define the fault as a major fault when the final successful fault
4799 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4800 * handle it immediately previously).
4801 */
4802 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4803
4804 if (major)
4805 current->maj_flt++;
4806 else
4807 current->min_flt++;
4808
4809 /*
4810 * If the fault is done for GUP, regs will be NULL. We only do the
4811 * accounting for the per thread fault counters who triggered the
4812 * fault, and we skip the perf event updates.
4813 */
4814 if (!regs)
4815 return;
4816
4817 if (major)
4818 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4819 else
4820 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4821 }
4822
4823 /*
4824 * By the time we get here, we already hold the mm semaphore
4825 *
4826 * The mmap_lock may have been released depending on flags and our
4827 * return value. See filemap_fault() and __lock_page_or_retry().
4828 */
4829 ///进程地址空间却也异常核心函数,平台无关部分
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)4830 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4831 unsigned int flags, struct pt_regs *regs)
4832 {
4833 vm_fault_t ret;
4834
4835 __set_current_state(TASK_RUNNING);
4836
4837 count_vm_event(PGFAULT);
4838 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4839
4840 /* do counter updates before entering really critical section. */
4841 check_sync_rss_stat(current);
4842
4843 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4844 flags & FAULT_FLAG_INSTRUCTION,
4845 flags & FAULT_FLAG_REMOTE))
4846 return VM_FAULT_SIGSEGV;
4847
4848 /*
4849 * Enable the memcg OOM handling for faults triggered in user
4850 * space. Kernel faults are handled more gracefully.
4851 */
4852 if (flags & FAULT_FLAG_USER)
4853 mem_cgroup_enter_user_fault();
4854
4855 if (unlikely(is_vm_hugetlb_page(vma)))
4856 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4857 else
4858 ret = __handle_mm_fault(vma, address, flags); ///缺页异常核心处理函数
4859
4860 if (flags & FAULT_FLAG_USER) {
4861 mem_cgroup_exit_user_fault();
4862 /*
4863 * The task may have entered a memcg OOM situation but
4864 * if the allocation error was handled gracefully (no
4865 * VM_FAULT_OOM), there is no need to kill anything.
4866 * Just clean up the OOM state peacefully.
4867 */
4868 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4869 mem_cgroup_oom_synchronize(false);
4870 }
4871
4872 mm_account_fault(regs, address, flags, ret);
4873
4874 return ret;
4875 }
4876 EXPORT_SYMBOL_GPL(handle_mm_fault);
4877
4878 #ifndef __PAGETABLE_P4D_FOLDED
4879 /*
4880 * Allocate p4d page table.
4881 * We've already handled the fast-path in-line.
4882 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4883 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4884 {
4885 p4d_t *new = p4d_alloc_one(mm, address);
4886 if (!new)
4887 return -ENOMEM;
4888
4889 smp_wmb(); /* See comment in __pte_alloc */
4890
4891 spin_lock(&mm->page_table_lock);
4892 if (pgd_present(*pgd)) /* Another has populated it */
4893 p4d_free(mm, new);
4894 else
4895 pgd_populate(mm, pgd, new);
4896 spin_unlock(&mm->page_table_lock);
4897 return 0;
4898 }
4899 #endif /* __PAGETABLE_P4D_FOLDED */
4900
4901 #ifndef __PAGETABLE_PUD_FOLDED
4902 /*
4903 * Allocate page upper directory.
4904 * We've already handled the fast-path in-line.
4905 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4906 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4907 {
4908 pud_t *new = pud_alloc_one(mm, address);
4909 if (!new)
4910 return -ENOMEM;
4911
4912 smp_wmb(); /* See comment in __pte_alloc */
4913
4914 spin_lock(&mm->page_table_lock);
4915 if (!p4d_present(*p4d)) {
4916 mm_inc_nr_puds(mm);
4917 p4d_populate(mm, p4d, new);
4918 } else /* Another has populated it */
4919 pud_free(mm, new);
4920 spin_unlock(&mm->page_table_lock);
4921 return 0;
4922 }
4923 #endif /* __PAGETABLE_PUD_FOLDED */
4924
4925 #ifndef __PAGETABLE_PMD_FOLDED
4926 /*
4927 * Allocate page middle directory.
4928 * We've already handled the fast-path in-line.
4929 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4930 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4931 {
4932 spinlock_t *ptl;
4933 pmd_t *new = pmd_alloc_one(mm, address);
4934 if (!new)
4935 return -ENOMEM;
4936
4937 smp_wmb(); /* See comment in __pte_alloc */
4938
4939 ptl = pud_lock(mm, pud);
4940 if (!pud_present(*pud)) {
4941 mm_inc_nr_pmds(mm);
4942 pud_populate(mm, pud, new);
4943 } else /* Another has populated it */
4944 pmd_free(mm, new);
4945 spin_unlock(ptl);
4946 return 0;
4947 }
4948 #endif /* __PAGETABLE_PMD_FOLDED */
4949
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4950 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4951 struct mmu_notifier_range *range, pte_t **ptepp,
4952 pmd_t **pmdpp, spinlock_t **ptlp)
4953 {
4954 pgd_t *pgd;
4955 p4d_t *p4d;
4956 pud_t *pud;
4957 pmd_t *pmd;
4958 pte_t *ptep;
4959
4960 pgd = pgd_offset(mm, address);
4961 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4962 goto out;
4963
4964 p4d = p4d_offset(pgd, address);
4965 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4966 goto out;
4967
4968 pud = pud_offset(p4d, address);
4969 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4970 goto out;
4971
4972 pmd = pmd_offset(pud, address);
4973 VM_BUG_ON(pmd_trans_huge(*pmd));
4974
4975 if (pmd_huge(*pmd)) {
4976 if (!pmdpp)
4977 goto out;
4978
4979 if (range) {
4980 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4981 NULL, mm, address & PMD_MASK,
4982 (address & PMD_MASK) + PMD_SIZE);
4983 mmu_notifier_invalidate_range_start(range);
4984 }
4985 *ptlp = pmd_lock(mm, pmd);
4986 if (pmd_huge(*pmd)) {
4987 *pmdpp = pmd;
4988 return 0;
4989 }
4990 spin_unlock(*ptlp);
4991 if (range)
4992 mmu_notifier_invalidate_range_end(range);
4993 }
4994
4995 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4996 goto out;
4997
4998 if (range) {
4999 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5000 address & PAGE_MASK,
5001 (address & PAGE_MASK) + PAGE_SIZE);
5002 mmu_notifier_invalidate_range_start(range);
5003 }
5004 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5005 if (!pte_present(*ptep))
5006 goto unlock;
5007 *ptepp = ptep;
5008 return 0;
5009 unlock:
5010 pte_unmap_unlock(ptep, *ptlp);
5011 if (range)
5012 mmu_notifier_invalidate_range_end(range);
5013 out:
5014 return -EINVAL;
5015 }
5016
5017 /**
5018 * follow_pte - look up PTE at a user virtual address
5019 * @mm: the mm_struct of the target address space
5020 * @address: user virtual address
5021 * @ptepp: location to store found PTE
5022 * @ptlp: location to store the lock for the PTE
5023 *
5024 * On a successful return, the pointer to the PTE is stored in @ptepp;
5025 * the corresponding lock is taken and its location is stored in @ptlp.
5026 * The contents of the PTE are only stable until @ptlp is released;
5027 * any further use, if any, must be protected against invalidation
5028 * with MMU notifiers.
5029 *
5030 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5031 * should be taken for read.
5032 *
5033 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5034 * it is not a good general-purpose API.
5035 *
5036 * Return: zero on success, -ve otherwise.
5037 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5038 int follow_pte(struct mm_struct *mm, unsigned long address,
5039 pte_t **ptepp, spinlock_t **ptlp)
5040 {
5041 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5042 }
5043 EXPORT_SYMBOL_GPL(follow_pte);
5044
5045 /**
5046 * follow_pfn - look up PFN at a user virtual address
5047 * @vma: memory mapping
5048 * @address: user virtual address
5049 * @pfn: location to store found PFN
5050 *
5051 * Only IO mappings and raw PFN mappings are allowed.
5052 *
5053 * This function does not allow the caller to read the permissions
5054 * of the PTE. Do not use it.
5055 *
5056 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5057 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5058 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5059 unsigned long *pfn)
5060 {
5061 int ret = -EINVAL;
5062 spinlock_t *ptl;
5063 pte_t *ptep;
5064
5065 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5066 return ret;
5067
5068 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5069 if (ret)
5070 return ret;
5071 *pfn = pte_pfn(*ptep);
5072 pte_unmap_unlock(ptep, ptl);
5073 return 0;
5074 }
5075 EXPORT_SYMBOL(follow_pfn);
5076
5077 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5078 int follow_phys(struct vm_area_struct *vma,
5079 unsigned long address, unsigned int flags,
5080 unsigned long *prot, resource_size_t *phys)
5081 {
5082 int ret = -EINVAL;
5083 pte_t *ptep, pte;
5084 spinlock_t *ptl;
5085
5086 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5087 goto out;
5088
5089 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5090 goto out;
5091 pte = *ptep;
5092
5093 if ((flags & FOLL_WRITE) && !pte_write(pte))
5094 goto unlock;
5095
5096 *prot = pgprot_val(pte_pgprot(pte));
5097 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5098
5099 ret = 0;
5100 unlock:
5101 pte_unmap_unlock(ptep, ptl);
5102 out:
5103 return ret;
5104 }
5105
5106 /**
5107 * generic_access_phys - generic implementation for iomem mmap access
5108 * @vma: the vma to access
5109 * @addr: userspace address, not relative offset within @vma
5110 * @buf: buffer to read/write
5111 * @len: length of transfer
5112 * @write: set to FOLL_WRITE when writing, otherwise reading
5113 *
5114 * This is a generic implementation for &vm_operations_struct.access for an
5115 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5116 * not page based.
5117 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5118 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5119 void *buf, int len, int write)
5120 {
5121 resource_size_t phys_addr;
5122 unsigned long prot = 0;
5123 void __iomem *maddr;
5124 pte_t *ptep, pte;
5125 spinlock_t *ptl;
5126 int offset = offset_in_page(addr);
5127 int ret = -EINVAL;
5128
5129 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5130 return -EINVAL;
5131
5132 retry:
5133 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5134 return -EINVAL;
5135 pte = *ptep;
5136 pte_unmap_unlock(ptep, ptl);
5137
5138 prot = pgprot_val(pte_pgprot(pte));
5139 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5140
5141 if ((write & FOLL_WRITE) && !pte_write(pte))
5142 return -EINVAL;
5143
5144 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5145 if (!maddr)
5146 return -ENOMEM;
5147
5148 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5149 goto out_unmap;
5150
5151 if (!pte_same(pte, *ptep)) {
5152 pte_unmap_unlock(ptep, ptl);
5153 iounmap(maddr);
5154
5155 goto retry;
5156 }
5157
5158 if (write)
5159 memcpy_toio(maddr + offset, buf, len);
5160 else
5161 memcpy_fromio(buf, maddr + offset, len);
5162 ret = len;
5163 pte_unmap_unlock(ptep, ptl);
5164 out_unmap:
5165 iounmap(maddr);
5166
5167 return ret;
5168 }
5169 EXPORT_SYMBOL_GPL(generic_access_phys);
5170 #endif
5171
5172 /*
5173 * Access another process' address space as given in mm.
5174 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5175 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5176 int len, unsigned int gup_flags)
5177 {
5178 struct vm_area_struct *vma;
5179 void *old_buf = buf;
5180 int write = gup_flags & FOLL_WRITE;
5181
5182 if (mmap_read_lock_killable(mm))
5183 return 0;
5184
5185 /* ignore errors, just check how much was successfully transferred */
5186 while (len) {
5187 int bytes, ret, offset;
5188 void *maddr;
5189 struct page *page = NULL;
5190
5191 ret = get_user_pages_remote(mm, addr, 1,
5192 gup_flags, &page, &vma, NULL);
5193 if (ret <= 0) {
5194 #ifndef CONFIG_HAVE_IOREMAP_PROT
5195 break;
5196 #else
5197 /*
5198 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5199 * we can access using slightly different code.
5200 */
5201 vma = vma_lookup(mm, addr);
5202 if (!vma)
5203 break;
5204 if (vma->vm_ops && vma->vm_ops->access)
5205 ret = vma->vm_ops->access(vma, addr, buf,
5206 len, write);
5207 if (ret <= 0)
5208 break;
5209 bytes = ret;
5210 #endif
5211 } else {
5212 bytes = len;
5213 offset = addr & (PAGE_SIZE-1);
5214 if (bytes > PAGE_SIZE-offset)
5215 bytes = PAGE_SIZE-offset;
5216
5217 maddr = kmap(page);
5218 if (write) {
5219 copy_to_user_page(vma, page, addr,
5220 maddr + offset, buf, bytes);
5221 set_page_dirty_lock(page);
5222 } else {
5223 copy_from_user_page(vma, page, addr,
5224 buf, maddr + offset, bytes);
5225 }
5226 kunmap(page);
5227 put_page(page);
5228 }
5229 len -= bytes;
5230 buf += bytes;
5231 addr += bytes;
5232 }
5233 mmap_read_unlock(mm);
5234
5235 return buf - old_buf;
5236 }
5237
5238 /**
5239 * access_remote_vm - access another process' address space
5240 * @mm: the mm_struct of the target address space
5241 * @addr: start address to access
5242 * @buf: source or destination buffer
5243 * @len: number of bytes to transfer
5244 * @gup_flags: flags modifying lookup behaviour
5245 *
5246 * The caller must hold a reference on @mm.
5247 *
5248 * Return: number of bytes copied from source to destination.
5249 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5250 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5251 void *buf, int len, unsigned int gup_flags)
5252 {
5253 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5254 }
5255
5256 /*
5257 * Access another process' address space.
5258 * Source/target buffer must be kernel space,
5259 * Do not walk the page table directly, use get_user_pages
5260 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5261 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5262 void *buf, int len, unsigned int gup_flags)
5263 {
5264 struct mm_struct *mm;
5265 int ret;
5266
5267 mm = get_task_mm(tsk);
5268 if (!mm)
5269 return 0;
5270
5271 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5272
5273 mmput(mm);
5274
5275 return ret;
5276 }
5277 EXPORT_SYMBOL_GPL(access_process_vm);
5278
5279 /*
5280 * Print the name of a VMA.
5281 */
print_vma_addr(char * prefix,unsigned long ip)5282 void print_vma_addr(char *prefix, unsigned long ip)
5283 {
5284 struct mm_struct *mm = current->mm;
5285 struct vm_area_struct *vma;
5286
5287 /*
5288 * we might be running from an atomic context so we cannot sleep
5289 */
5290 if (!mmap_read_trylock(mm))
5291 return;
5292
5293 vma = find_vma(mm, ip);
5294 if (vma && vma->vm_file) {
5295 struct file *f = vma->vm_file;
5296 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5297 if (buf) {
5298 char *p;
5299
5300 p = file_path(f, buf, PAGE_SIZE);
5301 if (IS_ERR(p))
5302 p = "?";
5303 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5304 vma->vm_start,
5305 vma->vm_end - vma->vm_start);
5306 free_page((unsigned long)buf);
5307 }
5308 }
5309 mmap_read_unlock(mm);
5310 }
5311
5312 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5313 void __might_fault(const char *file, int line)
5314 {
5315 /*
5316 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5317 * holding the mmap_lock, this is safe because kernel memory doesn't
5318 * get paged out, therefore we'll never actually fault, and the
5319 * below annotations will generate false positives.
5320 */
5321 if (uaccess_kernel())
5322 return;
5323 if (pagefault_disabled())
5324 return;
5325 __might_sleep(file, line, 0);
5326 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5327 if (current->mm)
5328 might_lock_read(¤t->mm->mmap_lock);
5329 #endif
5330 }
5331 EXPORT_SYMBOL(__might_fault);
5332 #endif
5333
5334 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5335 /*
5336 * Process all subpages of the specified huge page with the specified
5337 * operation. The target subpage will be processed last to keep its
5338 * cache lines hot.
5339 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5340 static inline void process_huge_page(
5341 unsigned long addr_hint, unsigned int pages_per_huge_page,
5342 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5343 void *arg)
5344 {
5345 int i, n, base, l;
5346 unsigned long addr = addr_hint &
5347 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5348
5349 /* Process target subpage last to keep its cache lines hot */
5350 might_sleep();
5351 n = (addr_hint - addr) / PAGE_SIZE;
5352 if (2 * n <= pages_per_huge_page) {
5353 /* If target subpage in first half of huge page */
5354 base = 0;
5355 l = n;
5356 /* Process subpages at the end of huge page */
5357 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5358 cond_resched();
5359 process_subpage(addr + i * PAGE_SIZE, i, arg);
5360 }
5361 } else {
5362 /* If target subpage in second half of huge page */
5363 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5364 l = pages_per_huge_page - n;
5365 /* Process subpages at the begin of huge page */
5366 for (i = 0; i < base; i++) {
5367 cond_resched();
5368 process_subpage(addr + i * PAGE_SIZE, i, arg);
5369 }
5370 }
5371 /*
5372 * Process remaining subpages in left-right-left-right pattern
5373 * towards the target subpage
5374 */
5375 for (i = 0; i < l; i++) {
5376 int left_idx = base + i;
5377 int right_idx = base + 2 * l - 1 - i;
5378
5379 cond_resched();
5380 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5381 cond_resched();
5382 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5383 }
5384 }
5385
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5386 static void clear_gigantic_page(struct page *page,
5387 unsigned long addr,
5388 unsigned int pages_per_huge_page)
5389 {
5390 int i;
5391 struct page *p = page;
5392
5393 might_sleep();
5394 for (i = 0; i < pages_per_huge_page;
5395 i++, p = mem_map_next(p, page, i)) {
5396 cond_resched();
5397 clear_user_highpage(p, addr + i * PAGE_SIZE);
5398 }
5399 }
5400
clear_subpage(unsigned long addr,int idx,void * arg)5401 static void clear_subpage(unsigned long addr, int idx, void *arg)
5402 {
5403 struct page *page = arg;
5404
5405 clear_user_highpage(page + idx, addr);
5406 }
5407
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5408 void clear_huge_page(struct page *page,
5409 unsigned long addr_hint, unsigned int pages_per_huge_page)
5410 {
5411 unsigned long addr = addr_hint &
5412 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5413
5414 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5415 clear_gigantic_page(page, addr, pages_per_huge_page);
5416 return;
5417 }
5418
5419 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5420 }
5421
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5422 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5423 unsigned long addr,
5424 struct vm_area_struct *vma,
5425 unsigned int pages_per_huge_page)
5426 {
5427 int i;
5428 struct page *dst_base = dst;
5429 struct page *src_base = src;
5430
5431 for (i = 0; i < pages_per_huge_page; ) {
5432 cond_resched();
5433 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5434
5435 i++;
5436 dst = mem_map_next(dst, dst_base, i);
5437 src = mem_map_next(src, src_base, i);
5438 }
5439 }
5440
5441 struct copy_subpage_arg {
5442 struct page *dst;
5443 struct page *src;
5444 struct vm_area_struct *vma;
5445 };
5446
copy_subpage(unsigned long addr,int idx,void * arg)5447 static void copy_subpage(unsigned long addr, int idx, void *arg)
5448 {
5449 struct copy_subpage_arg *copy_arg = arg;
5450
5451 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5452 addr, copy_arg->vma);
5453 }
5454
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5455 void copy_user_huge_page(struct page *dst, struct page *src,
5456 unsigned long addr_hint, struct vm_area_struct *vma,
5457 unsigned int pages_per_huge_page)
5458 {
5459 unsigned long addr = addr_hint &
5460 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5461 struct copy_subpage_arg arg = {
5462 .dst = dst,
5463 .src = src,
5464 .vma = vma,
5465 };
5466
5467 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5468 copy_user_gigantic_page(dst, src, addr, vma,
5469 pages_per_huge_page);
5470 return;
5471 }
5472
5473 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5474 }
5475
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5476 long copy_huge_page_from_user(struct page *dst_page,
5477 const void __user *usr_src,
5478 unsigned int pages_per_huge_page,
5479 bool allow_pagefault)
5480 {
5481 void *src = (void *)usr_src;
5482 void *page_kaddr;
5483 unsigned long i, rc = 0;
5484 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5485 struct page *subpage = dst_page;
5486
5487 for (i = 0; i < pages_per_huge_page;
5488 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5489 if (allow_pagefault)
5490 page_kaddr = kmap(subpage);
5491 else
5492 page_kaddr = kmap_atomic(subpage);
5493 rc = copy_from_user(page_kaddr,
5494 (const void __user *)(src + i * PAGE_SIZE),
5495 PAGE_SIZE);
5496 if (allow_pagefault)
5497 kunmap(subpage);
5498 else
5499 kunmap_atomic(page_kaddr);
5500
5501 ret_val -= (PAGE_SIZE - rc);
5502 if (rc)
5503 break;
5504
5505 cond_resched();
5506 }
5507 return ret_val;
5508 }
5509 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5510
5511 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5512
5513 static struct kmem_cache *page_ptl_cachep;
5514
ptlock_cache_init(void)5515 void __init ptlock_cache_init(void)
5516 {
5517 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5518 SLAB_PANIC, NULL);
5519 }
5520
ptlock_alloc(struct page * page)5521 bool ptlock_alloc(struct page *page)
5522 {
5523 spinlock_t *ptl;
5524
5525 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5526 if (!ptl)
5527 return false;
5528 page->ptl = ptl;
5529 return true;
5530 }
5531
ptlock_free(struct page * page)5532 void ptlock_free(struct page *page)
5533 {
5534 kmem_cache_free(page_ptl_cachep, page->ptl);
5535 }
5536 #endif
5537