1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70
71 /*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
81
82 /* Used in tsk->state: */
83 ///就绪态或正在运行,都用running
84 #define TASK_RUNNING 0x0000
85 #define TASK_INTERRUPTIBLE 0x0001
86 #define TASK_UNINTERRUPTIBLE 0x0002
87 #define __TASK_STOPPED 0x0004
88 #define __TASK_TRACED 0x0008
89 /* Used in tsk->exit_state: */
90 #define EXIT_DEAD 0x0010
91 #define EXIT_ZOMBIE 0x0020
92 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
93 /* Used in tsk->state again: */
94 #define TASK_PARKED 0x0040
95 #define TASK_DEAD 0x0080
96 #define TASK_WAKEKILL 0x0100
97 #define TASK_WAKING 0x0200
98 #define TASK_NOLOAD 0x0400
99 #define TASK_NEW 0x0800
100 /* RT specific auxilliary flag to mark RT lock waiters */
101 #define TASK_RTLOCK_WAIT 0x1000
102 #define TASK_STATE_MAX 0x2000
103
104 /* Convenience macros for the sake of set_current_state: */
105 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
106 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
107 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
108
109 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
110
111 /* Convenience macros for the sake of wake_up(): */
112 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
113
114 /* get_task_state(): */
115 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
116 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
117 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
118 TASK_PARKED)
119
120 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
121
122 #define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
123
124 #define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
125
126 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
127
128 /*
129 * Special states are those that do not use the normal wait-loop pattern. See
130 * the comment with set_special_state().
131 */
132 #define is_special_task_state(state) \
133 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
134
135 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
136 # define debug_normal_state_change(state_value) \
137 do { \
138 WARN_ON_ONCE(is_special_task_state(state_value)); \
139 current->task_state_change = _THIS_IP_; \
140 } while (0)
141
142 # define debug_special_state_change(state_value) \
143 do { \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 current->task_state_change = _THIS_IP_; \
146 } while (0)
147
148 # define debug_rtlock_wait_set_state() \
149 do { \
150 current->saved_state_change = current->task_state_change;\
151 current->task_state_change = _THIS_IP_; \
152 } while (0)
153
154 # define debug_rtlock_wait_restore_state() \
155 do { \
156 current->task_state_change = current->saved_state_change;\
157 } while (0)
158
159 #else
160 # define debug_normal_state_change(cond) do { } while (0)
161 # define debug_special_state_change(cond) do { } while (0)
162 # define debug_rtlock_wait_set_state() do { } while (0)
163 # define debug_rtlock_wait_restore_state() do { } while (0)
164 #endif
165
166 /*
167 * set_current_state() includes a barrier so that the write of current->state
168 * is correctly serialised wrt the caller's subsequent test of whether to
169 * actually sleep:
170 *
171 * for (;;) {
172 * set_current_state(TASK_UNINTERRUPTIBLE);
173 * if (CONDITION)
174 * break;
175 *
176 * schedule();
177 * }
178 * __set_current_state(TASK_RUNNING);
179 *
180 * If the caller does not need such serialisation (because, for instance, the
181 * CONDITION test and condition change and wakeup are under the same lock) then
182 * use __set_current_state().
183 *
184 * The above is typically ordered against the wakeup, which does:
185 *
186 * CONDITION = 1;
187 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
188 *
189 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
190 * accessing p->state.
191 *
192 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
193 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
194 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
195 *
196 * However, with slightly different timing the wakeup TASK_RUNNING store can
197 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
198 * a problem either because that will result in one extra go around the loop
199 * and our @cond test will save the day.
200 *
201 * Also see the comments of try_to_wake_up().
202 */
203 #define __set_current_state(state_value) \
204 do { \
205 debug_normal_state_change((state_value)); \
206 WRITE_ONCE(current->__state, (state_value)); \
207 } while (0)
208
209 #define set_current_state(state_value) \
210 do { \
211 debug_normal_state_change((state_value)); \
212 smp_store_mb(current->__state, (state_value)); \
213 } while (0)
214
215 /*
216 * set_special_state() should be used for those states when the blocking task
217 * can not use the regular condition based wait-loop. In that case we must
218 * serialize against wakeups such that any possible in-flight TASK_RUNNING
219 * stores will not collide with our state change.
220 */
221 #define set_special_state(state_value) \
222 do { \
223 unsigned long flags; /* may shadow */ \
224 \
225 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
226 debug_special_state_change((state_value)); \
227 WRITE_ONCE(current->__state, (state_value)); \
228 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
229 } while (0)
230
231 /*
232 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
233 *
234 * RT's spin/rwlock substitutions are state preserving. The state of the
235 * task when blocking on the lock is saved in task_struct::saved_state and
236 * restored after the lock has been acquired. These operations are
237 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
238 * lock related wakeups while the task is blocked on the lock are
239 * redirected to operate on task_struct::saved_state to ensure that these
240 * are not dropped. On restore task_struct::saved_state is set to
241 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
242 *
243 * The lock operation looks like this:
244 *
245 * current_save_and_set_rtlock_wait_state();
246 * for (;;) {
247 * if (try_lock())
248 * break;
249 * raw_spin_unlock_irq(&lock->wait_lock);
250 * schedule_rtlock();
251 * raw_spin_lock_irq(&lock->wait_lock);
252 * set_current_state(TASK_RTLOCK_WAIT);
253 * }
254 * current_restore_rtlock_saved_state();
255 */
256 #define current_save_and_set_rtlock_wait_state() \
257 do { \
258 lockdep_assert_irqs_disabled(); \
259 raw_spin_lock(¤t->pi_lock); \
260 current->saved_state = current->__state; \
261 debug_rtlock_wait_set_state(); \
262 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
263 raw_spin_unlock(¤t->pi_lock); \
264 } while (0);
265
266 #define current_restore_rtlock_saved_state() \
267 do { \
268 lockdep_assert_irqs_disabled(); \
269 raw_spin_lock(¤t->pi_lock); \
270 debug_rtlock_wait_restore_state(); \
271 WRITE_ONCE(current->__state, current->saved_state); \
272 current->saved_state = TASK_RUNNING; \
273 raw_spin_unlock(¤t->pi_lock); \
274 } while (0);
275
276 #define get_current_state() READ_ONCE(current->__state)
277
278 /* Task command name length: */
279 #define TASK_COMM_LEN 16
280
281 extern void scheduler_tick(void);
282
283 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
284
285 extern long schedule_timeout(long timeout);
286 extern long schedule_timeout_interruptible(long timeout);
287 extern long schedule_timeout_killable(long timeout);
288 extern long schedule_timeout_uninterruptible(long timeout);
289 extern long schedule_timeout_idle(long timeout);
290 asmlinkage void schedule(void);
291 extern void schedule_preempt_disabled(void);
292 asmlinkage void preempt_schedule_irq(void);
293 #ifdef CONFIG_PREEMPT_RT
294 extern void schedule_rtlock(void);
295 #endif
296
297 extern int __must_check io_schedule_prepare(void);
298 extern void io_schedule_finish(int token);
299 extern long io_schedule_timeout(long timeout);
300 extern void io_schedule(void);
301
302 /**
303 * struct prev_cputime - snapshot of system and user cputime
304 * @utime: time spent in user mode
305 * @stime: time spent in system mode
306 * @lock: protects the above two fields
307 *
308 * Stores previous user/system time values such that we can guarantee
309 * monotonicity.
310 */
311 struct prev_cputime {
312 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
313 u64 utime;
314 u64 stime;
315 raw_spinlock_t lock;
316 #endif
317 };
318
319 enum vtime_state {
320 /* Task is sleeping or running in a CPU with VTIME inactive: */
321 VTIME_INACTIVE = 0,
322 /* Task is idle */
323 VTIME_IDLE,
324 /* Task runs in kernelspace in a CPU with VTIME active: */
325 VTIME_SYS,
326 /* Task runs in userspace in a CPU with VTIME active: */
327 VTIME_USER,
328 /* Task runs as guests in a CPU with VTIME active: */
329 VTIME_GUEST,
330 };
331
332 struct vtime {
333 seqcount_t seqcount;
334 unsigned long long starttime;
335 enum vtime_state state;
336 unsigned int cpu;
337 u64 utime;
338 u64 stime;
339 u64 gtime;
340 };
341
342 /*
343 * Utilization clamp constraints.
344 * @UCLAMP_MIN: Minimum utilization
345 * @UCLAMP_MAX: Maximum utilization
346 * @UCLAMP_CNT: Utilization clamp constraints count
347 */
348 enum uclamp_id {
349 UCLAMP_MIN = 0,
350 UCLAMP_MAX,
351 UCLAMP_CNT
352 };
353
354 #ifdef CONFIG_SMP
355 extern struct root_domain def_root_domain;
356 extern struct mutex sched_domains_mutex;
357 #endif
358
359 struct sched_info {
360 #ifdef CONFIG_SCHED_INFO
361 /* Cumulative counters: */
362
363 /* # of times we have run on this CPU: */
364 unsigned long pcount;
365
366 /* Time spent waiting on a runqueue: */
367 unsigned long long run_delay;
368
369 /* Timestamps: */
370
371 /* When did we last run on a CPU? */
372 unsigned long long last_arrival;
373
374 /* When were we last queued to run? */
375 unsigned long long last_queued;
376
377 #endif /* CONFIG_SCHED_INFO */
378 };
379
380 /*
381 * Integer metrics need fixed point arithmetic, e.g., sched/fair
382 * has a few: load, load_avg, util_avg, freq, and capacity.
383 *
384 * We define a basic fixed point arithmetic range, and then formalize
385 * all these metrics based on that basic range.
386 */
387 # define SCHED_FIXEDPOINT_SHIFT 10
388 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
389
390 /* Increase resolution of cpu_capacity calculations */
391 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
392 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
393
394 struct load_weight {
395 unsigned long weight;
396 u32 inv_weight;
397 };
398
399 /**
400 * struct util_est - Estimation utilization of FAIR tasks
401 * @enqueued: instantaneous estimated utilization of a task/cpu
402 * @ewma: the Exponential Weighted Moving Average (EWMA)
403 * utilization of a task
404 *
405 * Support data structure to track an Exponential Weighted Moving Average
406 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
407 * average each time a task completes an activation. Sample's weight is chosen
408 * so that the EWMA will be relatively insensitive to transient changes to the
409 * task's workload.
410 *
411 * The enqueued attribute has a slightly different meaning for tasks and cpus:
412 * - task: the task's util_avg at last task dequeue time
413 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
414 * Thus, the util_est.enqueued of a task represents the contribution on the
415 * estimated utilization of the CPU where that task is currently enqueued.
416 *
417 * Only for tasks we track a moving average of the past instantaneous
418 * estimated utilization. This allows to absorb sporadic drops in utilization
419 * of an otherwise almost periodic task.
420 *
421 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
422 * updates. When a task is dequeued, its util_est should not be updated if its
423 * util_avg has not been updated in the meantime.
424 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
425 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
426 * for a task) it is safe to use MSB.
427 */
428 struct util_est {
429 unsigned int enqueued;
430 unsigned int ewma;
431 #define UTIL_EST_WEIGHT_SHIFT 2
432 #define UTIL_AVG_UNCHANGED 0x80000000
433 } __attribute__((__aligned__(sizeof(u64))));
434
435 /*
436 * The load/runnable/util_avg accumulates an infinite geometric series
437 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
438 *
439 * [load_avg definition]
440 *
441 * load_avg = runnable% * scale_load_down(load)
442 *
443 * [runnable_avg definition]
444 *
445 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
446 *
447 * [util_avg definition]
448 *
449 * util_avg = running% * SCHED_CAPACITY_SCALE
450 *
451 * where runnable% is the time ratio that a sched_entity is runnable and
452 * running% the time ratio that a sched_entity is running.
453 *
454 * For cfs_rq, they are the aggregated values of all runnable and blocked
455 * sched_entities.
456 *
457 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
458 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
459 * for computing those signals (see update_rq_clock_pelt())
460 *
461 * N.B., the above ratios (runnable% and running%) themselves are in the
462 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
463 * to as large a range as necessary. This is for example reflected by
464 * util_avg's SCHED_CAPACITY_SCALE.
465 *
466 * [Overflow issue]
467 *
468 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
469 * with the highest load (=88761), always runnable on a single cfs_rq,
470 * and should not overflow as the number already hits PID_MAX_LIMIT.
471 *
472 * For all other cases (including 32-bit kernels), struct load_weight's
473 * weight will overflow first before we do, because:
474 *
475 * Max(load_avg) <= Max(load.weight)
476 *
477 * Then it is the load_weight's responsibility to consider overflow
478 * issues.
479 */
480
481 ///IO型进程runnable_load_sum比CPU型小很多
482 struct sched_avg {
483 u64 last_update_time; ///上一次更新的时间点
484
485 ///1.对于调度实体,load_sum统计对象是调度实体在可运行状态下的累计衰减总时间, 值为时间
486 ///2.对调度队列,load_sum=decay_sum_load统计"所有进程"的累计工作总负载(时间乘以权重), 值为负载
487 u64 load_sum; ///对应量化负载 load_avg
488
489 ///调度实体:就绪队列里可运行状态下的累计总衰减时间decay_sum_time
490 ///调度队列:统计就绪队列里"所有可运行状态"下进程的累计总负载decay_sum_load
491 u64 runnable_sum;///对应量化负载runnable_avg
492
493 ///1调度实体:正在运行状态下累计衰减时间;
494 ///2调度队列:所有处于正在运行状态的衰减总时间
495 u32 util_sum; ///对应量化算力util_avg
496
497 ///上一次采样,不能凑成一个周期()的时间
498 u32 period_contrib;
499
500 ///1.调度实体: 总量化负载,load_avg==runnable_avg;
501 ///2.调度队列:
502 /// load_avg,所有进程量化总负载;
503 /// runnable_avg,可运行状态量化总负载
504 unsigned long load_avg;
505 unsigned long runnable_avg; ///在SMP负载均衡调度器中用于衡量CPU是否繁忙
506
507 ///用于EAS调度器和CPU调频
508 unsigned long util_avg;///实际算力
509 struct util_est util_est;
510 } ____cacheline_aligned;
511
512 struct sched_statistics {
513 #ifdef CONFIG_SCHEDSTATS
514 u64 wait_start;
515 u64 wait_max;
516 u64 wait_count;
517 u64 wait_sum;
518 u64 iowait_count;
519 u64 iowait_sum;
520
521 u64 sleep_start;
522 u64 sleep_max;
523 s64 sum_sleep_runtime;
524
525 u64 block_start;
526 u64 block_max;
527 u64 exec_max;
528 u64 slice_max;
529
530 u64 nr_migrations_cold;
531 u64 nr_failed_migrations_affine;
532 u64 nr_failed_migrations_running;
533 u64 nr_failed_migrations_hot;
534 u64 nr_forced_migrations;
535
536 u64 nr_wakeups;
537 u64 nr_wakeups_sync;
538 u64 nr_wakeups_migrate;
539 u64 nr_wakeups_local;
540 u64 nr_wakeups_remote;
541 u64 nr_wakeups_affine;
542 u64 nr_wakeups_affine_attempts;
543 u64 nr_wakeups_passive;
544 u64 nr_wakeups_idle;
545 #endif
546 };
547
548 struct sched_entity {
549 /* For load-balancing: */
550 struct load_weight load; ///权重信息,计算vruntime的时候,会用到in_weight
551 struct rb_node run_node; ///红黑树挂载点
552 struct list_head group_node; ///se加入就绪队列后,添加到rq->cfs_tasks链表
553 unsigned int on_rq; ///已加入就绪队列,on_rq=1,否则on_rq=0
554
555 u64 exec_start; ///se虚拟时间的起始时间
556 u64 sum_exec_runtime; ///实际运行时间总和
557 u64 vruntime; ///虚拟运行时间,加权后的时间,单位ns,与定时器节拍无关
558 u64 prev_sum_exec_runtime; ///上一次统计se运行总时间
559
560 u64 nr_migrations; ///该se发生迁移的次数
561
562 struct sched_statistics statistics; ///统计信息
563
564 #ifdef CONFIG_FAIR_GROUP_SCHED
565 int depth;
566 struct sched_entity *parent;
567 /* rq on which this entity is (to be) queued: */
568 ///该se挂在到cfs_rq,指向parent->my_rq
569 struct cfs_rq *cfs_rq;
570 /* rq "owned" by this entity/group: */
571 ///本se的cfs_rq,只有group se才有cfs_rq,task_se为NULl
572 struct cfs_rq *my_q;
573 /* cached value of my_q->h_nr_running */
574 unsigned long runnable_weight;
575 #endif
576
577 #ifdef CONFIG_SMP
578 /*
579 * Per entity load average tracking.
580 *
581 * Put into separate cache line so it does not
582 * collide with read-mostly values above.
583 */
584 struct sched_avg avg; ///负载相关的信息
585 #endif
586 };
587
588 struct sched_rt_entity {
589 struct list_head run_list;
590 unsigned long timeout;
591 unsigned long watchdog_stamp;
592 unsigned int time_slice;
593 unsigned short on_rq;
594 unsigned short on_list;
595
596 struct sched_rt_entity *back;
597 #ifdef CONFIG_RT_GROUP_SCHED
598 struct sched_rt_entity *parent;
599 /* rq on which this entity is (to be) queued: */
600 struct rt_rq *rt_rq;
601 /* rq "owned" by this entity/group: */
602 struct rt_rq *my_q;
603 #endif
604 } __randomize_layout;
605
606 struct sched_dl_entity {
607 struct rb_node rb_node;
608
609 /*
610 * Original scheduling parameters. Copied here from sched_attr
611 * during sched_setattr(), they will remain the same until
612 * the next sched_setattr().
613 */
614 u64 dl_runtime; /* Maximum runtime for each instance */
615 u64 dl_deadline; /* Relative deadline of each instance */
616 u64 dl_period; /* Separation of two instances (period) */
617 u64 dl_bw; /* dl_runtime / dl_period */
618 u64 dl_density; /* dl_runtime / dl_deadline */
619
620 /*
621 * Actual scheduling parameters. Initialized with the values above,
622 * they are continuously updated during task execution. Note that
623 * the remaining runtime could be < 0 in case we are in overrun.
624 */
625 s64 runtime; /* Remaining runtime for this instance */
626 u64 deadline; /* Absolute deadline for this instance */
627 unsigned int flags; /* Specifying the scheduler behaviour */
628
629 /*
630 * Some bool flags:
631 *
632 * @dl_throttled tells if we exhausted the runtime. If so, the
633 * task has to wait for a replenishment to be performed at the
634 * next firing of dl_timer.
635 *
636 * @dl_boosted tells if we are boosted due to DI. If so we are
637 * outside bandwidth enforcement mechanism (but only until we
638 * exit the critical section);
639 *
640 * @dl_yielded tells if task gave up the CPU before consuming
641 * all its available runtime during the last job.
642 *
643 * @dl_non_contending tells if the task is inactive while still
644 * contributing to the active utilization. In other words, it
645 * indicates if the inactive timer has been armed and its handler
646 * has not been executed yet. This flag is useful to avoid race
647 * conditions between the inactive timer handler and the wakeup
648 * code.
649 *
650 * @dl_overrun tells if the task asked to be informed about runtime
651 * overruns.
652 */
653 unsigned int dl_throttled : 1;
654 unsigned int dl_yielded : 1;
655 unsigned int dl_non_contending : 1;
656 unsigned int dl_overrun : 1;
657
658 /*
659 * Bandwidth enforcement timer. Each -deadline task has its
660 * own bandwidth to be enforced, thus we need one timer per task.
661 */
662 struct hrtimer dl_timer;
663
664 /*
665 * Inactive timer, responsible for decreasing the active utilization
666 * at the "0-lag time". When a -deadline task blocks, it contributes
667 * to GRUB's active utilization until the "0-lag time", hence a
668 * timer is needed to decrease the active utilization at the correct
669 * time.
670 */
671 struct hrtimer inactive_timer;
672
673 #ifdef CONFIG_RT_MUTEXES
674 /*
675 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
676 * pi_se points to the donor, otherwise points to the dl_se it belongs
677 * to (the original one/itself).
678 */
679 struct sched_dl_entity *pi_se;
680 #endif
681 };
682
683 #ifdef CONFIG_UCLAMP_TASK
684 /* Number of utilization clamp buckets (shorter alias) */
685 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
686
687 /*
688 * Utilization clamp for a scheduling entity
689 * @value: clamp value "assigned" to a se
690 * @bucket_id: bucket index corresponding to the "assigned" value
691 * @active: the se is currently refcounted in a rq's bucket
692 * @user_defined: the requested clamp value comes from user-space
693 *
694 * The bucket_id is the index of the clamp bucket matching the clamp value
695 * which is pre-computed and stored to avoid expensive integer divisions from
696 * the fast path.
697 *
698 * The active bit is set whenever a task has got an "effective" value assigned,
699 * which can be different from the clamp value "requested" from user-space.
700 * This allows to know a task is refcounted in the rq's bucket corresponding
701 * to the "effective" bucket_id.
702 *
703 * The user_defined bit is set whenever a task has got a task-specific clamp
704 * value requested from userspace, i.e. the system defaults apply to this task
705 * just as a restriction. This allows to relax default clamps when a less
706 * restrictive task-specific value has been requested, thus allowing to
707 * implement a "nice" semantic. For example, a task running with a 20%
708 * default boost can still drop its own boosting to 0%.
709 */
710 struct uclamp_se {
711 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
712 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
713 unsigned int active : 1;
714 unsigned int user_defined : 1;
715 };
716 #endif /* CONFIG_UCLAMP_TASK */
717
718 union rcu_special {
719 struct {
720 u8 blocked;
721 u8 need_qs;
722 u8 exp_hint; /* Hint for performance. */
723 u8 need_mb; /* Readers need smp_mb(). */
724 } b; /* Bits. */
725 u32 s; /* Set of bits. */
726 };
727
728 enum perf_event_task_context {
729 perf_invalid_context = -1,
730 perf_hw_context = 0,
731 perf_sw_context,
732 perf_nr_task_contexts,
733 };
734
735 struct wake_q_node {
736 struct wake_q_node *next;
737 };
738
739 struct kmap_ctrl {
740 #ifdef CONFIG_KMAP_LOCAL
741 int idx;
742 pte_t pteval[KM_MAX_IDX];
743 #endif
744 };
745
746 struct task_struct {
747 #ifdef CONFIG_THREAD_INFO_IN_TASK
748 /*
749 * For reasons of header soup (see current_thread_info()), this
750 * must be the first element of task_struct.
751 */
752 ///Linux5.0中thread_info从内核栈移到了task_struct
753 ///ARM64的SP_EL0用来存放当前进程的task_struct地址
754 struct thread_info thread_info;
755 #endif
756 /*
757 * 进程存续期间的状态:
758 * 1.TASK_RUNNING:就绪态和运行态都是TASK_RUNNING
759 * 就绪态:唯一等待的资源是CPU,并拿到CPU可以立即运行,放在运行队列中rq;
760 * 运行态:正在运行的当前进程;
761 *
762 * 2.TASK_INTERRUPTIBLE:浅度睡眠,可中断的等待状态;
763 * 睡眠等待某事件或资源,当得到满足时,可以被信号唤醒,
764 * 进程状态变为TASK_RUNNING, 加入运行队列rq; *
765 * 3.TASK_UNINTERRUPTIBLE:深度睡眠,不可中断的等待状态;
766 * 该状态进程等待某个事件或资源,等待过程不能被打断,不响应任何外部信号;
767 * 比如,从磁盘读入可执行代码过程中,又有代码需要从磁盘读取,会造成嵌套睡眠;
768 *
769 * 4.TASK_STOPPED:暂停状态
770 * 进程暂时停止运行,收到SIGSTOP,SIGTSTP,SIGTTIN,SIGTTOU信号处于该状态;
771 *
772 * 5.TASK_ZOMBIE:僵尸态
773 * 子进程死亡后,变成僵尸,mm,fs等资源都已释放,只剩task_struct结构体躯壳还没被父进程清理,
774 * 父进程通过wait_pid获取子进程僵尸状态,wait结束,僵尸所有资源被释放;
775 */
776 unsigned int __state;
777
778 #ifdef CONFIG_PREEMPT_RT
779 /* saved state for "spinlock sleepers" */
780 unsigned int saved_state;
781 #endif
782
783 /*
784 * This begins the randomizable portion of task_struct. Only
785 * scheduling-critical items should be added above here.
786 */
787 randomized_struct_fields_start
788
789 ///指向进程的内核栈
790 void *stack;
791 ///进程描述符使用计数
792 refcount_t usage;
793
794 /*
795 * flags:进程当前的状态标志,比如
796 * #define PF_SIGNALED 0x00000400 // Killed by a signal
797 */
798 /* Per task flags (PF_*), defined further below: */
799 unsigned int flags;
800 /*
801 * ptrace系统调用设置,0表示不需要被跟踪
802 */
803 unsigned int ptrace;
804
805 #ifdef CONFIG_SMP
806 ///进程是否正处于运行running状态
807 int on_cpu;
808 struct __call_single_node wake_entry;
809 #ifdef CONFIG_THREAD_INFO_IN_TASK
810 /* Current CPU: */
811 ///当前进程在哪个CPU运行
812 unsigned int cpu;
813 #endif
814 unsigned int wakee_flips;
815 unsigned long wakee_flip_decay_ts;
816 ///上一次唤醒的是哪个进程
817 struct task_struct *last_wakee;
818
819 /*
820 * recent_used_cpu is initially set as the last CPU used by a task
821 * that wakes affine another task. Waker/wakee relationships can
822 * push tasks around a CPU where each wakeup moves to the next one.
823 * Tracking a recently used CPU allows a quick search for a recently
824 * used CPU that may be idle.
825 */
826 int recent_used_cpu;
827 ///进程上一次运行在哪个cpu
828 int wake_cpu;
829 #endif
830 /*
831 * on_rq:进程状态
832 * TASK_ON_RQ_QUEUED:表示进程正在就绪队列中;
833 * TASK_ON_RQ_MIGRATING: 处于迁移过程中的进程,可能不再就绪队列中
834 */
835 int on_rq;
836
837 /*
838 * prio:调度类考虑的动态优先级,有些情况下可以暂时提高优先级,比如实时互斥锁;
839 * static_prio:进程静态优先级,进程启动时分配,不会随时间改变,可以用nice(),sched_setscheduler()修改;
840 * normal_prio:基于static_prio和调度策略计算的优先级,创建时继承父进程normal_prio,
841 * 对普通进程,normal_prio=static_prio,
842 * 对实时进程,会根据rt_priority重新计算normal_prio。
843 * rt_priority:实时进程优先级
844 * */
845 int prio;
846 int static_prio;
847 int normal_prio;
848 unsigned int rt_priority;
849
850 /*
851 * 调度类:
852 * linux实现调度类有:stop_sched_class,dl_sched_class,rt_sched_class,fair_sched_class,idle_sched_class;
853 * 不同的调度类,对应不同的调度操作方法
854 */
855 const struct sched_class *sched_class;
856 /*
857 * 普通进程调度实体:
858 * se不仅用于单个进程调度,还用于“组调度”
859 */
860 struct sched_entity se;
861 ///rt进程调度实体
862 struct sched_rt_entity rt;
863 ///deadline进程调度实体
864 struct sched_dl_entity dl;
865
866 #ifdef CONFIG_SCHED_CORE
867 struct rb_node core_node;
868 unsigned long core_cookie;
869 unsigned int core_occupation;
870 #endif
871
872 #ifdef CONFIG_CGROUP_SCHED
873 ///cgroup cpu资源统计对象
874 struct task_group *sched_task_group;
875 #endif
876
877 #ifdef CONFIG_UCLAMP_TASK
878 /*
879 * Clamp values requested for a scheduling entity.
880 * Must be updated with task_rq_lock() held.
881 */
882 struct uclamp_se uclamp_req[UCLAMP_CNT];
883 /*
884 * Effective clamp values used for a scheduling entity.
885 * Must be updated with task_rq_lock() held.
886 */
887 struct uclamp_se uclamp[UCLAMP_CNT];
888 #endif
889
890 #ifdef CONFIG_PREEMPT_NOTIFIERS
891 /* List of struct preempt_notifier: */
892 struct hlist_head preempt_notifiers;
893 #endif
894
895 #ifdef CONFIG_BLK_DEV_IO_TRACE
896 ///blktrace,针对Linux中块设备I/O层的跟踪工具
897 unsigned int btrace_seq;
898 #endif
899
900 /*
901 * policy:进程的调度策略,目前主要有
902 * #define SCHED_NORMAL 0 //用于普通进程,cfs调度
903 * #define SCHED_FIFO 1 //实时调度类, 霸占型,高优先级执行完,才会执行低优先级
904 * #define SCHED_RR 2 //实时调度类, 不同优先级同SCHED_FIFO, 同优先级,时间片轮转
905 * #define SCHED_BATCH 3 //非交互CPU密集型,通过cfs实现,不抢占cfs的其他进程,使用场景:不希望该进程影响系统交互性
906 * #define SCHED_IDLE 5 //cfs处理,相对权重最小
907 * #define SCHED_DEADLINE 6 //DL调度器思想:谁更紧急,谁先跑
908 **/
909 unsigned int policy;
910 ///进程允许运行的cpu个数
911 int nr_cpus_allowed;
912 ///进程允许运行cpu位图
913 const cpumask_t *cpus_ptr;
914 cpumask_t *user_cpus_ptr;
915 cpumask_t cpus_mask;
916 void *migration_pending;
917 #ifdef CONFIG_SMP
918 unsigned short migration_disabled;
919 #endif
920 unsigned short migration_flags;
921
922 #ifdef CONFIG_PREEMPT_RCU
923 int rcu_read_lock_nesting;
924 union rcu_special rcu_read_unlock_special;
925 struct list_head rcu_node_entry;
926 struct rcu_node *rcu_blocked_node;
927 #endif /* #ifdef CONFIG_PREEMPT_RCU */
928
929 #ifdef CONFIG_TASKS_RCU
930 unsigned long rcu_tasks_nvcsw;
931 u8 rcu_tasks_holdout;
932 u8 rcu_tasks_idx;
933 int rcu_tasks_idle_cpu;
934 struct list_head rcu_tasks_holdout_list;
935 #endif /* #ifdef CONFIG_TASKS_RCU */
936
937 ///RCU同步原语
938 #ifdef CONFIG_TASKS_TRACE_RCU
939 int trc_reader_nesting;
940 int trc_ipi_to_cpu;
941 union rcu_special trc_reader_special;
942 bool trc_reader_checked;
943 struct list_head trc_holdout_list;
944 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
945
946 /*
947 * 用于调度器统计进程的运行信息
948 * */
949 struct sched_info sched_info;
950 /*
951 * 系统中所有进程通过tasks组成一个链表,双向环形链表;
952 * 链表头是init_task, 即0号进程
953 * next_task(): 遍历下一个进程
954 * next_thread(): 遍历线程组的下一个线程
955 */
956 struct list_head tasks;
957 #ifdef CONFIG_SMP
958 struct plist_node pushable_tasks;
959 struct rb_node pushable_dl_tasks;
960 #endif
961
962 /*
963 * mm:指向进程的内存描述符,内核线程为NULL
964 * active_mm:指向进程运行时所使用的内存描述符
965 *
966 * 普通进程:两个指针相同;
967 * 内核线程:mm==NULL,当线程运行时,active_mm被初始化为前一个运行进程的active_mm值?
968 * */
969 struct mm_struct *mm;
970 struct mm_struct *active_mm;
971
972 /* Per-thread vma caching: */
973 struct vmacache vmacache;
974
975 #ifdef SPLIT_RSS_COUNTING
976 struct task_rss_stat rss_stat;
977 #endif
978 /*
979 * 进程退出状态码
980 * exit_state:
981 * 判断标志:
982 * exit_code: 进程的终止代号,_exit()/exit_group()参数,或者内核提供的错误代号
983 * exit_signal:置-1表示属于某个线程组一员,当线程组最后一个成员终止时,产生一个信号,通知线程组leader进程的父进程
984 */
985 int exit_state;
986 int exit_code;
987 int exit_signal;
988
989 ///父进程终止时,发送的信号
990 /* The signal sent when the parent dies: */
991 int pdeath_signal;
992 /* JOBCTL_*, siglock protected: */
993 unsigned long jobctl;
994
995 /* Used for emulating ABI behavior of previous Linux versions: */
996 unsigned int personality;
997
998 /* Scheduler bits, serialized by scheduler locks: */
999 unsigned sched_reset_on_fork:1;
1000 unsigned sched_contributes_to_load:1;
1001 unsigned sched_migrated:1;
1002 #ifdef CONFIG_PSI
1003 unsigned sched_psi_wake_requeue:1;
1004 #endif
1005
1006 /* Force alignment to the next boundary: */
1007 unsigned :0;
1008
1009 /* Unserialized, strictly 'current' */
1010
1011 /*
1012 * This field must not be in the scheduler word above due to wakelist
1013 * queueing no longer being serialized by p->on_cpu. However:
1014 *
1015 * p->XXX = X; ttwu()
1016 * schedule() if (p->on_rq && ..) // false
1017 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
1018 * deactivate_task() ttwu_queue_wakelist())
1019 * p->on_rq = 0; p->sched_remote_wakeup = Y;
1020 *
1021 * guarantees all stores of 'current' are visible before
1022 * ->sched_remote_wakeup gets used, so it can be in this word.
1023 */
1024 unsigned sched_remote_wakeup:1;
1025
1026 /* Bit to tell LSMs we're in execve(): */
1027 ///通知LSM是否被do_execve()调用
1028 unsigned in_execve:1;
1029 ///判断是否进行iowait计数
1030 unsigned in_iowait:1;
1031 #ifndef TIF_RESTORE_SIGMASK
1032 unsigned restore_sigmask:1;
1033 #endif
1034 #ifdef CONFIG_MEMCG
1035 unsigned in_user_fault:1;
1036 #endif
1037 #ifdef CONFIG_COMPAT_BRK
1038 unsigned brk_randomized:1;
1039 #endif
1040 #ifdef CONFIG_CGROUPS
1041 /* disallow userland-initiated cgroup migration */
1042 unsigned no_cgroup_migration:1;
1043 /* task is frozen/stopped (used by the cgroup freezer) */
1044 unsigned frozen:1;
1045 #endif
1046 #ifdef CONFIG_BLK_CGROUP
1047 unsigned use_memdelay:1;
1048 #endif
1049 #ifdef CONFIG_PSI
1050 /* Stalled due to lack of memory */
1051 unsigned in_memstall:1;
1052 #endif
1053 #ifdef CONFIG_PAGE_OWNER
1054 /* Used by page_owner=on to detect recursion in page tracking. */
1055 unsigned in_page_owner:1;
1056 #endif
1057 #ifdef CONFIG_EVENTFD
1058 /* Recursion prevention for eventfd_signal() */
1059 unsigned in_eventfd_signal:1;
1060 #endif
1061
1062 unsigned long atomic_flags; /* Flags requiring atomic access. */
1063
1064 struct restart_block restart_block;
1065
1066 /*
1067 * pid:线程id,每个线程都不同
1068 * tgid:线程组id, 同一个进程中所有线程相同
1069 *
1070 * 一个线程组中,所有线程的tgid相同,pid都不相同,只有线程组长(该组第一个线程)的pid==tgid
1071 * getpid():返回TGID
1072 * gettid():返回PID
1073 */
1074 pid_t pid;
1075 pid_t tgid;
1076
1077 ///防止内核栈溢出
1078 #ifdef CONFIG_STACKPROTECTOR
1079 /* Canary value for the -fstack-protector GCC feature: */
1080 unsigned long stack_canary;
1081 #endif
1082 /*
1083 * Pointers to the (original) parent process, youngest child, younger sibling,
1084 * older sibling, respectively. (p->father can be replaced with
1085 * p->real_parent->pid)
1086 */
1087
1088 /*
1089 * real_parent: 指向父进程
1090 * parent: 指向父进程,进程终止时,向父进程发送信号.通常parent==real_parent
1091 * children: 链表头,所有子进程构成的链表
1092 * sibling: 把当前进程插入到兄弟链表中
1093 * group_leader: 指向其所在进程组的leader进程
1094 * */
1095
1096 /* Real parent process: */
1097 struct task_struct __rcu *real_parent;
1098
1099 /* Recipient of SIGCHLD, wait4() reports: */
1100 struct task_struct __rcu *parent;
1101
1102 /*
1103 * Children/sibling form the list of natural children:
1104 */
1105 struct list_head children;
1106 struct list_head sibling;
1107 struct task_struct *group_leader;
1108
1109 /*
1110 * 'ptraced' is the list of tasks this task is using ptrace() on.
1111 *
1112 * This includes both natural children and PTRACE_ATTACH targets.
1113 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1114 */
1115 struct list_head ptraced;
1116 struct list_head ptrace_entry;
1117
1118 /* PID/PID hash table linkage. */
1119 ///进程pid哈希表,可以用来判断线程是否alive,进程退出,这个指针为NULL
1120 struct pid *thread_pid;
1121 struct hlist_node pid_links[PIDTYPE_MAX];
1122
1123 ///线程组中所有线程的链表
1124 struct list_head thread_group;
1125 struct list_head thread_node;
1126
1127 struct completion *vfork_done;
1128
1129 /* CLONE_CHILD_SETTID: */
1130 int __user *set_child_tid;
1131
1132 /* CLONE_CHILD_CLEARTID: */
1133 int __user *clear_child_tid;
1134
1135 /* PF_IO_WORKER */
1136 void *pf_io_worker;
1137
1138 /*
1139 * utime: 用于记录进程在用户态经历的节拍数
1140 * stime: 用于记录进程在内核态经历的节拍数
1141 * utimescaled:记录进程在用户态运行时间,以处理器的频率为刻度;
1142 * stimescaled:记录进程在内核态运行时间,以处理器的频率为刻度;
1143 * */
1144 u64 utime;
1145 u64 stime;
1146 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1147 u64 utimescaled;
1148 u64 stimescaled;
1149 #endif
1150 ///以节拍计数的虚拟机运行时间guest time
1151 u64 gtime;
1152 ///先前运行的cpu时间
1153 struct prev_cputime prev_cputime;
1154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1155 struct vtime vtime;
1156 #endif
1157
1158 #ifdef CONFIG_NO_HZ_FULL
1159 atomic_t tick_dep_mask;
1160 #endif
1161 /* Context switch counts: */
1162 unsigned long nvcsw; ///进程主动(voluntary)切换次数
1163 unsigned long nivcsw; ///进程被动(involuntary)切换次数
1164
1165 /* Monotonic time in nsecs: */
1166 u64 start_time; ///进程开始时间
1167
1168 /* Boot based time in nsecs: */
1169 u64 start_boottime; ///进程开始时间,包含睡眠时间?
1170
1171 ///缺页统计
1172 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1173 unsigned long min_flt;
1174 unsigned long maj_flt;
1175
1176 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1177 struct posix_cputimers posix_cputimers;
1178
1179 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1180 struct posix_cputimers_work posix_cputimers_work;
1181 #endif
1182
1183 /* Process credentials: */
1184
1185 /* Tracer's credentials at attach: */
1186 const struct cred __rcu *ptracer_cred;
1187
1188 /* Objective and real subjective task credentials (COW): */
1189 const struct cred __rcu *real_cred;
1190
1191 /* Effective (overridable) subjective task credentials (COW): */
1192 const struct cred __rcu *cred;
1193
1194 #ifdef CONFIG_KEYS
1195 /* Cached requested key. */
1196 struct key *cached_requested_key;
1197 #endif
1198
1199 /*
1200 * executable name, excluding path.
1201 *
1202 * - normally initialized setup_new_exec()
1203 * - access it with [gs]et_task_comm()
1204 * - lock it with task_lock()
1205 */
1206 char comm[TASK_COMM_LEN]; ///程序名字,不包括路径
1207
1208 struct nameidata *nameidata;
1209
1210 #ifdef CONFIG_SYSVIPC
1211 ///进程通信相关
1212 struct sysv_sem sysvsem;
1213 struct sysv_shm sysvshm;
1214 #endif
1215 #ifdef CONFIG_DETECT_HUNG_TASK
1216 ///最后一次切换时的总切换次数,只有两个地方更新:1.新建进程初始化, 2.hungtask线程中;
1217 unsigned long last_switch_count;
1218 ///最后一次切换的时间戳jiffies
1219 unsigned long last_switch_time;
1220 #endif
1221 /*
1222 * fs:表示进程与文件系统的联系,包括当前目录和根目录
1223 * files:表示进程当前打开的文件
1224 * */
1225 /* Filesystem information: */
1226 struct fs_struct *fs;
1227
1228 /* Open file information: */
1229 struct files_struct *files;
1230
1231 #ifdef CONFIG_IO_URING
1232 struct io_uring_task *io_uring;
1233 #endif
1234
1235 /* Namespaces: */
1236 struct nsproxy *nsproxy; ///命名空间
1237
1238 /*
1239 * signal:指向进程的信号描述符
1240 * sighand:指向进程的信号响应函数的描述符
1241 * */
1242 /* Signal handlers: */
1243 struct signal_struct *signal;
1244 struct sighand_struct __rcu *sighand;
1245 sigset_t blocked; ///被阻塞信号的掩码
1246 sigset_t real_blocked; ///临时掩码
1247 /* Restored if set_restore_sigmask() was used: */
1248 sigset_t saved_sigmask;
1249 struct sigpending pending; ///存放私有挂起信号
1250 unsigned long sas_ss_sp; ///信号处理程序备用堆栈地址
1251 size_t sas_ss_size; ///堆栈大小
1252 unsigned int sas_ss_flags;
1253
1254 struct callback_head *task_works;
1255
1256 #ifdef CONFIG_AUDIT
1257 #ifdef CONFIG_AUDITSYSCALL
1258 struct audit_context *audit_context;
1259 #endif
1260 kuid_t loginuid;
1261 unsigned int sessionid;
1262 #endif
1263 struct seccomp seccomp;
1264 struct syscall_user_dispatch syscall_dispatch;
1265
1266 /* Thread group tracking: */
1267 u64 parent_exec_id;
1268 u64 self_exec_id;
1269
1270 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1271 spinlock_t alloc_lock;
1272
1273 /* Protection of the PI data structures: */
1274 raw_spinlock_t pi_lock;
1275
1276 struct wake_q_node wake_q;
1277
1278 #ifdef CONFIG_RT_MUTEXES
1279 /* PI waiters blocked on a rt_mutex held by this task: */
1280 struct rb_root_cached pi_waiters;
1281 /* Updated under owner's pi_lock and rq lock */
1282 struct task_struct *pi_top_task;
1283 /* Deadlock detection and priority inheritance handling: */
1284 struct rt_mutex_waiter *pi_blocked_on;
1285 #endif
1286
1287 #ifdef CONFIG_DEBUG_MUTEXES
1288 /* Mutex deadlock detection: */
1289 struct mutex_waiter *blocked_on;
1290 #endif
1291
1292 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1293 int non_block_count;
1294 #endif
1295
1296 #ifdef CONFIG_TRACE_IRQFLAGS
1297 struct irqtrace_events irqtrace;
1298 unsigned int hardirq_threaded;
1299 u64 hardirq_chain_key;
1300 int softirqs_enabled;
1301 int softirq_context;
1302 int irq_config;
1303 #endif
1304 #ifdef CONFIG_PREEMPT_RT
1305 int softirq_disable_cnt;
1306 #endif
1307
1308 #ifdef CONFIG_LOCKDEP
1309 # define MAX_LOCK_DEPTH 48UL
1310 u64 curr_chain_key;
1311 int lockdep_depth;
1312 unsigned int lockdep_recursion;
1313 struct held_lock held_locks[MAX_LOCK_DEPTH];
1314 #endif
1315
1316 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1317 unsigned int in_ubsan;
1318 #endif
1319
1320 /* Journalling filesystem info: */
1321 void *journal_info;
1322
1323 /* Stacked block device info: */
1324 struct bio_list *bio_list;
1325
1326 #ifdef CONFIG_BLOCK
1327 /* Stack plugging: */
1328 struct blk_plug *plug;
1329 #endif
1330
1331 /* VM state: */
1332 struct reclaim_state *reclaim_state;
1333
1334 struct backing_dev_info *backing_dev_info;
1335
1336 struct io_context *io_context;
1337
1338 #ifdef CONFIG_COMPACTION
1339 struct capture_control *capture_control;
1340 #endif
1341 /* Ptrace state: */
1342 unsigned long ptrace_message;
1343 kernel_siginfo_t *last_siginfo;
1344
1345 struct task_io_accounting ioac;
1346 #ifdef CONFIG_PSI
1347 ///PSI所处状态
1348 /* Pressure stall state */
1349 unsigned int psi_flags;
1350 #endif
1351 #ifdef CONFIG_TASK_XACCT
1352 /* Accumulated RSS usage: */
1353 u64 acct_rss_mem1;
1354 /* Accumulated virtual memory usage: */
1355 u64 acct_vm_mem1;
1356 /* stime + utime since last update: */
1357 u64 acct_timexpd;
1358 #endif
1359 #ifdef CONFIG_CPUSETS
1360 /* Protected by ->alloc_lock: */
1361 nodemask_t mems_allowed;
1362 /* Sequence number to catch updates: */
1363 seqcount_spinlock_t mems_allowed_seq;
1364 int cpuset_mem_spread_rotor;
1365 int cpuset_slab_spread_rotor;
1366 #endif
1367 #ifdef CONFIG_CGROUPS
1368 /* Control Group info protected by css_set_lock: */
1369 struct css_set __rcu *cgroups; ///与进程相关的cgroup信息
1370 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1371 struct list_head cg_list; ///同一个css_set里所有进程,连成一个链表
1372 #endif
1373 #ifdef CONFIG_X86_CPU_RESCTRL
1374 u32 closid;
1375 u32 rmid;
1376 #endif
1377 #ifdef CONFIG_FUTEX
1378 struct robust_list_head __user *robust_list;
1379 #ifdef CONFIG_COMPAT
1380 struct compat_robust_list_head __user *compat_robust_list;
1381 #endif
1382 struct list_head pi_state_list;
1383 struct futex_pi_state *pi_state_cache;
1384 struct mutex futex_exit_mutex;
1385 unsigned int futex_state;
1386 #endif
1387 #ifdef CONFIG_PERF_EVENTS
1388 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1389 struct mutex perf_event_mutex;
1390 struct list_head perf_event_list;
1391 #endif
1392 #ifdef CONFIG_DEBUG_PREEMPT
1393 unsigned long preempt_disable_ip;
1394 #endif
1395 #ifdef CONFIG_NUMA
1396 /* Protected by alloc_lock: */
1397 struct mempolicy *mempolicy;
1398 short il_prev;
1399 short pref_node_fork;
1400 #endif
1401 #ifdef CONFIG_NUMA_BALANCING
1402 int numa_scan_seq;
1403 unsigned int numa_scan_period;
1404 unsigned int numa_scan_period_max;
1405 int numa_preferred_nid;
1406 unsigned long numa_migrate_retry;
1407 /* Migration stamp: */
1408 u64 node_stamp;
1409 u64 last_task_numa_placement;
1410 u64 last_sum_exec_runtime;
1411 struct callback_head numa_work;
1412
1413 /*
1414 * This pointer is only modified for current in syscall and
1415 * pagefault context (and for tasks being destroyed), so it can be read
1416 * from any of the following contexts:
1417 * - RCU read-side critical section
1418 * - current->numa_group from everywhere
1419 * - task's runqueue locked, task not running
1420 */
1421 struct numa_group __rcu *numa_group;
1422
1423 /*
1424 * numa_faults is an array split into four regions:
1425 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1426 * in this precise order.
1427 *
1428 * faults_memory: Exponential decaying average of faults on a per-node
1429 * basis. Scheduling placement decisions are made based on these
1430 * counts. The values remain static for the duration of a PTE scan.
1431 * faults_cpu: Track the nodes the process was running on when a NUMA
1432 * hinting fault was incurred.
1433 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1434 * during the current scan window. When the scan completes, the counts
1435 * in faults_memory and faults_cpu decay and these values are copied.
1436 */
1437 unsigned long *numa_faults;
1438 unsigned long total_numa_faults;
1439
1440 /*
1441 * numa_faults_locality tracks if faults recorded during the last
1442 * scan window were remote/local or failed to migrate. The task scan
1443 * period is adapted based on the locality of the faults with different
1444 * weights depending on whether they were shared or private faults
1445 */
1446 unsigned long numa_faults_locality[3];
1447
1448 unsigned long numa_pages_migrated;
1449 #endif /* CONFIG_NUMA_BALANCING */
1450
1451 #ifdef CONFIG_RSEQ
1452 struct rseq __user *rseq;
1453 u32 rseq_sig;
1454 /*
1455 * RmW on rseq_event_mask must be performed atomically
1456 * with respect to preemption.
1457 */
1458 unsigned long rseq_event_mask;
1459 #endif
1460
1461 struct tlbflush_unmap_batch tlb_ubc;
1462
1463 union {
1464 refcount_t rcu_users;
1465 struct rcu_head rcu;
1466 };
1467
1468 /* Cache last used pipe for splice(): */
1469 struct pipe_inode_info *splice_pipe;
1470
1471 struct page_frag task_frag;
1472
1473 #ifdef CONFIG_TASK_DELAY_ACCT
1474 struct task_delay_info *delays;
1475 #endif
1476
1477 #ifdef CONFIG_FAULT_INJECTION
1478 int make_it_fail;
1479 unsigned int fail_nth;
1480 #endif
1481 /*
1482 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1483 * balance_dirty_pages() for a dirty throttling pause:
1484 */
1485 int nr_dirtied;
1486 int nr_dirtied_pause;
1487 /* Start of a write-and-pause period: */
1488 unsigned long dirty_paused_when;
1489
1490 #ifdef CONFIG_LATENCYTOP
1491 int latency_record_count;
1492 struct latency_record latency_record[LT_SAVECOUNT];
1493 #endif
1494 /*
1495 * Time slack values; these are used to round up poll() and
1496 * select() etc timeout values. These are in nanoseconds.
1497 */
1498 u64 timer_slack_ns;
1499 u64 default_timer_slack_ns;
1500
1501 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1502 unsigned int kasan_depth;
1503 #endif
1504
1505 #ifdef CONFIG_KCSAN
1506 struct kcsan_ctx kcsan_ctx;
1507 #ifdef CONFIG_TRACE_IRQFLAGS
1508 struct irqtrace_events kcsan_save_irqtrace;
1509 #endif
1510 #endif
1511
1512 #if IS_ENABLED(CONFIG_KUNIT)
1513 struct kunit *kunit_test;
1514 #endif
1515
1516 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1517 /* Index of current stored address in ret_stack: */
1518 int curr_ret_stack;
1519 int curr_ret_depth;
1520
1521 /* Stack of return addresses for return function tracing: */
1522 struct ftrace_ret_stack *ret_stack;
1523
1524 /* Timestamp for last schedule: */
1525 unsigned long long ftrace_timestamp;
1526
1527 /*
1528 * Number of functions that haven't been traced
1529 * because of depth overrun:
1530 */
1531 atomic_t trace_overrun;
1532
1533 /* Pause tracing: */
1534 atomic_t tracing_graph_pause;
1535 #endif
1536
1537 #ifdef CONFIG_TRACING
1538 /* State flags for use by tracers: */
1539 unsigned long trace;
1540
1541 /* Bitmask and counter of trace recursion: */
1542 unsigned long trace_recursion;
1543 #endif /* CONFIG_TRACING */
1544
1545 #ifdef CONFIG_KCOV
1546 /* See kernel/kcov.c for more details. */
1547
1548 /* Coverage collection mode enabled for this task (0 if disabled): */
1549 unsigned int kcov_mode;
1550
1551 /* Size of the kcov_area: */
1552 unsigned int kcov_size;
1553
1554 /* Buffer for coverage collection: */
1555 void *kcov_area;
1556
1557 /* KCOV descriptor wired with this task or NULL: */
1558 struct kcov *kcov;
1559
1560 /* KCOV common handle for remote coverage collection: */
1561 u64 kcov_handle;
1562
1563 /* KCOV sequence number: */
1564 int kcov_sequence;
1565
1566 /* Collect coverage from softirq context: */
1567 unsigned int kcov_softirq;
1568 #endif
1569
1570 #ifdef CONFIG_MEMCG
1571 struct mem_cgroup *memcg_in_oom;
1572 gfp_t memcg_oom_gfp_mask;
1573 int memcg_oom_order;
1574
1575 /* Number of pages to reclaim on returning to userland: */
1576 unsigned int memcg_nr_pages_over_high;
1577
1578 /* Used by memcontrol for targeted memcg charge: */
1579 ///内存资源统计对象
1580 struct mem_cgroup *active_memcg;
1581 #endif
1582
1583 #ifdef CONFIG_BLK_CGROUP
1584 struct request_queue *throttle_queue;
1585 #endif
1586
1587 #ifdef CONFIG_UPROBES
1588 struct uprobe_task *utask;
1589 #endif
1590 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1591 unsigned int sequential_io;
1592 unsigned int sequential_io_avg;
1593 #endif
1594 struct kmap_ctrl kmap_ctrl;
1595 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1596 unsigned long task_state_change;
1597 # ifdef CONFIG_PREEMPT_RT
1598 unsigned long saved_state_change;
1599 # endif
1600 #endif
1601 int pagefault_disabled;
1602 #ifdef CONFIG_MMU
1603 struct task_struct *oom_reaper_list;
1604 #endif
1605 #ifdef CONFIG_VMAP_STACK
1606 struct vm_struct *stack_vm_area;
1607 #endif
1608 #ifdef CONFIG_THREAD_INFO_IN_TASK
1609 /* A live task holds one reference: */
1610 refcount_t stack_refcount;
1611 #endif
1612 #ifdef CONFIG_LIVEPATCH
1613 int patch_state;
1614 #endif
1615 #ifdef CONFIG_SECURITY
1616 /* Used by LSM modules for access restriction: */
1617 void *security;
1618 #endif
1619 #ifdef CONFIG_BPF_SYSCALL
1620 /* Used by BPF task local storage */
1621 struct bpf_local_storage __rcu *bpf_storage;
1622 /* Used for BPF run context */
1623 struct bpf_run_ctx *bpf_ctx;
1624 #endif
1625
1626 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1627 unsigned long lowest_stack;
1628 unsigned long prev_lowest_stack;
1629 #endif
1630
1631 #ifdef CONFIG_X86_MCE
1632 void __user *mce_vaddr;
1633 __u64 mce_kflags;
1634 u64 mce_addr;
1635 __u64 mce_ripv : 1,
1636 mce_whole_page : 1,
1637 __mce_reserved : 62;
1638 struct callback_head mce_kill_me;
1639 int mce_count;
1640 #endif
1641
1642 #ifdef CONFIG_KRETPROBES
1643 struct llist_head kretprobe_instances;
1644 #endif
1645
1646 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1647 /*
1648 * If L1D flush is supported on mm context switch
1649 * then we use this callback head to queue kill work
1650 * to kill tasks that are not running on SMT disabled
1651 * cores
1652 */
1653 struct callback_head l1d_flush_kill;
1654 #endif
1655
1656 /*
1657 * New fields for task_struct should be added above here, so that
1658 * they are included in the randomized portion of task_struct.
1659 */
1660 randomized_struct_fields_end
1661
1662 /* CPU-specific state of this task: */
1663 ///switch_to时,保存进程的硬件上下文
1664 struct thread_struct thread;
1665
1666 /*
1667 * WARNING: on x86, 'thread_struct' contains a variable-sized
1668 * structure. It *MUST* be at the end of 'task_struct'.
1669 *
1670 * Do not put anything below here!
1671 */
1672 };
1673
task_pid(struct task_struct * task)1674 static inline struct pid *task_pid(struct task_struct *task)
1675 {
1676 return task->thread_pid;
1677 }
1678
1679 /*
1680 * the helpers to get the task's different pids as they are seen
1681 * from various namespaces
1682 *
1683 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1684 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1685 * current.
1686 * task_xid_nr_ns() : id seen from the ns specified;
1687 *
1688 * see also pid_nr() etc in include/linux/pid.h
1689 */
1690 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1691
task_pid_nr(struct task_struct * tsk)1692 static inline pid_t task_pid_nr(struct task_struct *tsk)
1693 {
1694 return tsk->pid;
1695 }
1696
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1697 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1698 {
1699 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1700 }
1701
task_pid_vnr(struct task_struct * tsk)1702 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1703 {
1704 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1705 }
1706
1707
task_tgid_nr(struct task_struct * tsk)1708 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1709 {
1710 return tsk->tgid;
1711 }
1712
1713 /**
1714 * pid_alive - check that a task structure is not stale
1715 * @p: Task structure to be checked.
1716 *
1717 * Test if a process is not yet dead (at most zombie state)
1718 * If pid_alive fails, then pointers within the task structure
1719 * can be stale and must not be dereferenced.
1720 *
1721 * Return: 1 if the process is alive. 0 otherwise.
1722 */
pid_alive(const struct task_struct * p)1723 static inline int pid_alive(const struct task_struct *p)
1724 {
1725 return p->thread_pid != NULL;
1726 }
1727
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1728 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1729 {
1730 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1731 }
1732
task_pgrp_vnr(struct task_struct * tsk)1733 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1734 {
1735 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1736 }
1737
1738
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1739 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1740 {
1741 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1742 }
1743
task_session_vnr(struct task_struct * tsk)1744 static inline pid_t task_session_vnr(struct task_struct *tsk)
1745 {
1746 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1747 }
1748
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1749 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1750 {
1751 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1752 }
1753
task_tgid_vnr(struct task_struct * tsk)1754 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1755 {
1756 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1757 }
1758
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1759 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1760 {
1761 pid_t pid = 0;
1762
1763 rcu_read_lock();
1764 if (pid_alive(tsk))
1765 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1766 rcu_read_unlock();
1767
1768 return pid;
1769 }
1770
task_ppid_nr(const struct task_struct * tsk)1771 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1772 {
1773 return task_ppid_nr_ns(tsk, &init_pid_ns);
1774 }
1775
1776 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1777 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1778 {
1779 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1780 }
1781
1782 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1783 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1784
task_state_index(struct task_struct * tsk)1785 static inline unsigned int task_state_index(struct task_struct *tsk)
1786 {
1787 unsigned int tsk_state = READ_ONCE(tsk->__state);
1788 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1789
1790 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1791
1792 if (tsk_state == TASK_IDLE)
1793 state = TASK_REPORT_IDLE;
1794
1795 return fls(state);
1796 }
1797
task_index_to_char(unsigned int state)1798 static inline char task_index_to_char(unsigned int state)
1799 {
1800 static const char state_char[] = "RSDTtXZPI";
1801
1802 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1803
1804 return state_char[state];
1805 }
1806
task_state_to_char(struct task_struct * tsk)1807 static inline char task_state_to_char(struct task_struct *tsk)
1808 {
1809 return task_index_to_char(task_state_index(tsk));
1810 }
1811
1812 /**
1813 * is_global_init - check if a task structure is init. Since init
1814 * is free to have sub-threads we need to check tgid.
1815 * @tsk: Task structure to be checked.
1816 *
1817 * Check if a task structure is the first user space task the kernel created.
1818 *
1819 * Return: 1 if the task structure is init. 0 otherwise.
1820 */
is_global_init(struct task_struct * tsk)1821 static inline int is_global_init(struct task_struct *tsk)
1822 {
1823 return task_tgid_nr(tsk) == 1;
1824 }
1825
1826 extern struct pid *cad_pid;
1827
1828 /*
1829 * Per process flags
1830 */
1831 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1832 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1833 #define PF_EXITING 0x00000004 /* Getting shut down */
1834 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1835 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1836 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1837 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1838 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1839 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1840 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1841 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1842 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1843 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1844 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1845 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1846 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1847 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1848 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1849 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1850 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1851 * I am cleaning dirty pages from some other bdi. */
1852 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1853 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1854 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1855 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1856 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1857 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1858 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1859 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1860
1861 /*
1862 * Only the _current_ task can read/write to tsk->flags, but other
1863 * tasks can access tsk->flags in readonly mode for example
1864 * with tsk_used_math (like during threaded core dumping).
1865 * There is however an exception to this rule during ptrace
1866 * or during fork: the ptracer task is allowed to write to the
1867 * child->flags of its traced child (same goes for fork, the parent
1868 * can write to the child->flags), because we're guaranteed the
1869 * child is not running and in turn not changing child->flags
1870 * at the same time the parent does it.
1871 */
1872 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1873 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1874 #define clear_used_math() clear_stopped_child_used_math(current)
1875 #define set_used_math() set_stopped_child_used_math(current)
1876
1877 #define conditional_stopped_child_used_math(condition, child) \
1878 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1879
1880 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1881
1882 #define copy_to_stopped_child_used_math(child) \
1883 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1884
1885 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1886 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1887 #define used_math() tsk_used_math(current)
1888
is_percpu_thread(void)1889 static __always_inline bool is_percpu_thread(void)
1890 {
1891 #ifdef CONFIG_SMP
1892 return (current->flags & PF_NO_SETAFFINITY) &&
1893 (current->nr_cpus_allowed == 1);
1894 #else
1895 return true;
1896 #endif
1897 }
1898
1899 /* Per-process atomic flags. */
1900 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1901 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1902 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1903 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1904 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1905 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1906 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1907 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1908
1909 #define TASK_PFA_TEST(name, func) \
1910 static inline bool task_##func(struct task_struct *p) \
1911 { return test_bit(PFA_##name, &p->atomic_flags); }
1912
1913 #define TASK_PFA_SET(name, func) \
1914 static inline void task_set_##func(struct task_struct *p) \
1915 { set_bit(PFA_##name, &p->atomic_flags); }
1916
1917 #define TASK_PFA_CLEAR(name, func) \
1918 static inline void task_clear_##func(struct task_struct *p) \
1919 { clear_bit(PFA_##name, &p->atomic_flags); }
1920
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1921 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1922 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1923
1924 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1925 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1926 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1927
1928 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1929 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1930 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1931
1932 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1933 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1934 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1935
1936 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1937 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1938 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1939
1940 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1941 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1942
1943 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1944 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1945 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1946
1947 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1948 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1949
1950 static inline void
1951 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1952 {
1953 current->flags &= ~flags;
1954 current->flags |= orig_flags & flags;
1955 }
1956
1957 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1958 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1959 #ifdef CONFIG_SMP
1960 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1961 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1962 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1963 extern void release_user_cpus_ptr(struct task_struct *p);
1964 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1965 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1966 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1967 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1968 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1969 {
1970 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1971 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1972 {
1973 if (!cpumask_test_cpu(0, new_mask))
1974 return -EINVAL;
1975 return 0;
1976 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1977 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1978 {
1979 if (src->user_cpus_ptr)
1980 return -EINVAL;
1981 return 0;
1982 }
release_user_cpus_ptr(struct task_struct * p)1983 static inline void release_user_cpus_ptr(struct task_struct *p)
1984 {
1985 WARN_ON(p->user_cpus_ptr);
1986 }
1987
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1988 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1989 {
1990 return 0;
1991 }
1992 #endif
1993
1994 extern int yield_to(struct task_struct *p, bool preempt);
1995 extern void set_user_nice(struct task_struct *p, long nice);
1996 extern int task_prio(const struct task_struct *p);
1997
1998 /**
1999 * task_nice - return the nice value of a given task.
2000 * @p: the task in question.
2001 *
2002 * Return: The nice value [ -20 ... 0 ... 19 ].
2003 */
task_nice(const struct task_struct * p)2004 static inline int task_nice(const struct task_struct *p)
2005 {
2006 return PRIO_TO_NICE((p)->static_prio);
2007 }
2008
2009 extern int can_nice(const struct task_struct *p, const int nice);
2010 extern int task_curr(const struct task_struct *p);
2011 extern int idle_cpu(int cpu);
2012 extern int available_idle_cpu(int cpu);
2013 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
2014 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
2015 extern void sched_set_fifo(struct task_struct *p);
2016 extern void sched_set_fifo_low(struct task_struct *p);
2017 extern void sched_set_normal(struct task_struct *p, int nice);
2018 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
2019 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
2020 extern struct task_struct *idle_task(int cpu);
2021
2022 /**
2023 * is_idle_task - is the specified task an idle task?
2024 * @p: the task in question.
2025 *
2026 * Return: 1 if @p is an idle task. 0 otherwise.
2027 */
is_idle_task(const struct task_struct * p)2028 static __always_inline bool is_idle_task(const struct task_struct *p)
2029 {
2030 return !!(p->flags & PF_IDLE);
2031 }
2032
2033 extern struct task_struct *curr_task(int cpu);
2034 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2035
2036 void yield(void);
2037
2038 union thread_union {
2039 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
2040 struct task_struct task;
2041 #endif
2042 #ifndef CONFIG_THREAD_INFO_IN_TASK
2043 struct thread_info thread_info;
2044 #endif
2045 unsigned long stack[THREAD_SIZE/sizeof(long)];
2046 };
2047
2048 #ifndef CONFIG_THREAD_INFO_IN_TASK
2049 extern struct thread_info init_thread_info;
2050 #endif
2051
2052 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
2053
2054 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)2055 static inline struct thread_info *task_thread_info(struct task_struct *task)
2056 {
2057 return &task->thread_info;
2058 }
2059 #elif !defined(__HAVE_THREAD_FUNCTIONS)
2060 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
2061 #endif
2062
2063 /*
2064 * find a task by one of its numerical ids
2065 *
2066 * find_task_by_pid_ns():
2067 * finds a task by its pid in the specified namespace
2068 * find_task_by_vpid():
2069 * finds a task by its virtual pid
2070 *
2071 * see also find_vpid() etc in include/linux/pid.h
2072 */
2073
2074 extern struct task_struct *find_task_by_vpid(pid_t nr);
2075 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
2076
2077 /*
2078 * find a task by its virtual pid and get the task struct
2079 */
2080 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
2081
2082 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2083 extern int wake_up_process(struct task_struct *tsk);
2084 extern void wake_up_new_task(struct task_struct *tsk);
2085
2086 #ifdef CONFIG_SMP
2087 extern void kick_process(struct task_struct *tsk);
2088 #else
kick_process(struct task_struct * tsk)2089 static inline void kick_process(struct task_struct *tsk) { }
2090 #endif
2091
2092 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2093
set_task_comm(struct task_struct * tsk,const char * from)2094 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2095 {
2096 __set_task_comm(tsk, from, false);
2097 }
2098
2099 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2100 #define get_task_comm(buf, tsk) ({ \
2101 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
2102 __get_task_comm(buf, sizeof(buf), tsk); \
2103 })
2104
2105 #ifdef CONFIG_SMP
scheduler_ipi(void)2106 static __always_inline void scheduler_ipi(void)
2107 {
2108 /*
2109 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2110 * TIF_NEED_RESCHED remotely (for the first time) will also send
2111 * this IPI.
2112 */
2113 preempt_fold_need_resched();
2114 }
2115 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2116 #else
scheduler_ipi(void)2117 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,unsigned int match_state)2118 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2119 {
2120 return 1;
2121 }
2122 #endif
2123
2124 /*
2125 * Set thread flags in other task's structures.
2126 * See asm/thread_info.h for TIF_xxxx flags available:
2127 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2128 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2129 {
2130 set_ti_thread_flag(task_thread_info(tsk), flag);
2131 }
2132
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2133 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2134 {
2135 clear_ti_thread_flag(task_thread_info(tsk), flag);
2136 }
2137
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2138 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2139 bool value)
2140 {
2141 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2142 }
2143
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2144 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2145 {
2146 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2147 }
2148
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2149 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2150 {
2151 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2152 }
2153
test_tsk_thread_flag(struct task_struct * tsk,int flag)2154 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2155 {
2156 return test_ti_thread_flag(task_thread_info(tsk), flag);
2157 }
2158
set_tsk_need_resched(struct task_struct * tsk)2159 static inline void set_tsk_need_resched(struct task_struct *tsk)
2160 {
2161 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2162 }
2163
clear_tsk_need_resched(struct task_struct * tsk)2164 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2165 {
2166 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2167 }
2168
test_tsk_need_resched(struct task_struct * tsk)2169 static inline int test_tsk_need_resched(struct task_struct *tsk)
2170 {
2171 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2172 }
2173
2174 /*
2175 * cond_resched() and cond_resched_lock(): latency reduction via
2176 * explicit rescheduling in places that are safe. The return
2177 * value indicates whether a reschedule was done in fact.
2178 * cond_resched_lock() will drop the spinlock before scheduling,
2179 */
2180 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2181 extern int __cond_resched(void);
2182
2183 #ifdef CONFIG_PREEMPT_DYNAMIC
2184
2185 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2186
_cond_resched(void)2187 static __always_inline int _cond_resched(void)
2188 {
2189 return static_call_mod(cond_resched)();
2190 }
2191
2192 #else
2193
_cond_resched(void)2194 static inline int _cond_resched(void)
2195 {
2196 return __cond_resched();
2197 }
2198
2199 #endif /* CONFIG_PREEMPT_DYNAMIC */
2200
2201 #else
2202
_cond_resched(void)2203 static inline int _cond_resched(void) { return 0; }
2204
2205 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2206
2207 #define cond_resched() ({ \
2208 ___might_sleep(__FILE__, __LINE__, 0); \
2209 _cond_resched(); \
2210 })
2211
2212 extern int __cond_resched_lock(spinlock_t *lock);
2213 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2214 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2215
2216 #define cond_resched_lock(lock) ({ \
2217 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2218 __cond_resched_lock(lock); \
2219 })
2220
2221 #define cond_resched_rwlock_read(lock) ({ \
2222 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2223 __cond_resched_rwlock_read(lock); \
2224 })
2225
2226 #define cond_resched_rwlock_write(lock) ({ \
2227 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2228 __cond_resched_rwlock_write(lock); \
2229 })
2230
cond_resched_rcu(void)2231 static inline void cond_resched_rcu(void)
2232 {
2233 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2234 rcu_read_unlock();
2235 cond_resched();
2236 rcu_read_lock();
2237 #endif
2238 }
2239
2240 /*
2241 * Does a critical section need to be broken due to another
2242 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2243 * but a general need for low latency)
2244 */
spin_needbreak(spinlock_t * lock)2245 static inline int spin_needbreak(spinlock_t *lock)
2246 {
2247 #ifdef CONFIG_PREEMPTION
2248 return spin_is_contended(lock);
2249 #else
2250 return 0;
2251 #endif
2252 }
2253
2254 /*
2255 * Check if a rwlock is contended.
2256 * Returns non-zero if there is another task waiting on the rwlock.
2257 * Returns zero if the lock is not contended or the system / underlying
2258 * rwlock implementation does not support contention detection.
2259 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2260 * for low latency.
2261 */
rwlock_needbreak(rwlock_t * lock)2262 static inline int rwlock_needbreak(rwlock_t *lock)
2263 {
2264 #ifdef CONFIG_PREEMPTION
2265 return rwlock_is_contended(lock);
2266 #else
2267 return 0;
2268 #endif
2269 }
2270
need_resched(void)2271 static __always_inline bool need_resched(void)
2272 {
2273 return unlikely(tif_need_resched());
2274 }
2275
2276 /*
2277 * Wrappers for p->thread_info->cpu access. No-op on UP.
2278 */
2279 #ifdef CONFIG_SMP
2280
task_cpu(const struct task_struct * p)2281 static inline unsigned int task_cpu(const struct task_struct *p)
2282 {
2283 #ifdef CONFIG_THREAD_INFO_IN_TASK
2284 return READ_ONCE(p->cpu);
2285 #else
2286 return READ_ONCE(task_thread_info(p)->cpu);
2287 #endif
2288 }
2289
2290 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2291
2292 #else
2293
task_cpu(const struct task_struct * p)2294 static inline unsigned int task_cpu(const struct task_struct *p)
2295 {
2296 return 0;
2297 }
2298
set_task_cpu(struct task_struct * p,unsigned int cpu)2299 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2300 {
2301 }
2302
2303 #endif /* CONFIG_SMP */
2304
2305 extern bool sched_task_on_rq(struct task_struct *p);
2306
2307 /*
2308 * In order to reduce various lock holder preemption latencies provide an
2309 * interface to see if a vCPU is currently running or not.
2310 *
2311 * This allows us to terminate optimistic spin loops and block, analogous to
2312 * the native optimistic spin heuristic of testing if the lock owner task is
2313 * running or not.
2314 */
2315 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2316 static inline bool vcpu_is_preempted(int cpu)
2317 {
2318 return false;
2319 }
2320 #endif
2321
2322 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2323 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2324
2325 #ifndef TASK_SIZE_OF
2326 #define TASK_SIZE_OF(tsk) TASK_SIZE
2327 #endif
2328
2329 #ifdef CONFIG_SMP
2330 /* Returns effective CPU energy utilization, as seen by the scheduler */
2331 unsigned long sched_cpu_util(int cpu, unsigned long max);
2332 #endif /* CONFIG_SMP */
2333
2334 #ifdef CONFIG_RSEQ
2335
2336 /*
2337 * Map the event mask on the user-space ABI enum rseq_cs_flags
2338 * for direct mask checks.
2339 */
2340 enum rseq_event_mask_bits {
2341 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2342 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2343 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2344 };
2345
2346 enum rseq_event_mask {
2347 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2348 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2349 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2350 };
2351
rseq_set_notify_resume(struct task_struct * t)2352 static inline void rseq_set_notify_resume(struct task_struct *t)
2353 {
2354 if (t->rseq)
2355 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2356 }
2357
2358 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2359
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2360 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2361 struct pt_regs *regs)
2362 {
2363 if (current->rseq)
2364 __rseq_handle_notify_resume(ksig, regs);
2365 }
2366
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2367 static inline void rseq_signal_deliver(struct ksignal *ksig,
2368 struct pt_regs *regs)
2369 {
2370 preempt_disable();
2371 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2372 preempt_enable();
2373 rseq_handle_notify_resume(ksig, regs);
2374 }
2375
2376 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2377 static inline void rseq_preempt(struct task_struct *t)
2378 {
2379 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2380 rseq_set_notify_resume(t);
2381 }
2382
2383 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2384 static inline void rseq_migrate(struct task_struct *t)
2385 {
2386 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2387 rseq_set_notify_resume(t);
2388 }
2389
2390 /*
2391 * If parent process has a registered restartable sequences area, the
2392 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2393 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2394 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2395 {
2396 if (clone_flags & CLONE_VM) {
2397 t->rseq = NULL;
2398 t->rseq_sig = 0;
2399 t->rseq_event_mask = 0;
2400 } else {
2401 t->rseq = current->rseq;
2402 t->rseq_sig = current->rseq_sig;
2403 t->rseq_event_mask = current->rseq_event_mask;
2404 }
2405 }
2406
rseq_execve(struct task_struct * t)2407 static inline void rseq_execve(struct task_struct *t)
2408 {
2409 t->rseq = NULL;
2410 t->rseq_sig = 0;
2411 t->rseq_event_mask = 0;
2412 }
2413
2414 #else
2415
rseq_set_notify_resume(struct task_struct * t)2416 static inline void rseq_set_notify_resume(struct task_struct *t)
2417 {
2418 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2419 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2420 struct pt_regs *regs)
2421 {
2422 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2423 static inline void rseq_signal_deliver(struct ksignal *ksig,
2424 struct pt_regs *regs)
2425 {
2426 }
rseq_preempt(struct task_struct * t)2427 static inline void rseq_preempt(struct task_struct *t)
2428 {
2429 }
rseq_migrate(struct task_struct * t)2430 static inline void rseq_migrate(struct task_struct *t)
2431 {
2432 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2433 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2434 {
2435 }
rseq_execve(struct task_struct * t)2436 static inline void rseq_execve(struct task_struct *t)
2437 {
2438 }
2439
2440 #endif
2441
2442 #ifdef CONFIG_DEBUG_RSEQ
2443
2444 void rseq_syscall(struct pt_regs *regs);
2445
2446 #else
2447
rseq_syscall(struct pt_regs * regs)2448 static inline void rseq_syscall(struct pt_regs *regs)
2449 {
2450 }
2451
2452 #endif
2453
2454 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2455 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2456 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2457
2458 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2459 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2460 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2461
2462 int sched_trace_rq_cpu(struct rq *rq);
2463 int sched_trace_rq_cpu_capacity(struct rq *rq);
2464 int sched_trace_rq_nr_running(struct rq *rq);
2465
2466 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2467
2468 #ifdef CONFIG_SCHED_CORE
2469 extern void sched_core_free(struct task_struct *tsk);
2470 extern void sched_core_fork(struct task_struct *p);
2471 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2472 unsigned long uaddr);
2473 #else
sched_core_free(struct task_struct * tsk)2474 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2475 static inline void sched_core_fork(struct task_struct *p) { }
2476 #endif
2477
2478 #endif
2479