1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		unsigned long start, unsigned long end);
82 
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type	prot
88  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
89  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
90  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
91  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
92  *
93  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *								r: (no) no
100  *								w: (no) no
101  *								x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107 
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 	return prot;
112 }
113 #endif
114 
vm_get_page_prot(unsigned long vm_flags)115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
120 
121 	return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129 
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 	unsigned long vm_flags = vma->vm_flags;
134 	pgprot_t vm_page_prot;
135 
136 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 	if (vma_wants_writenotify(vma, vm_page_prot)) {
138 		vm_flags &= ~VM_SHARED;
139 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 	}
141 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144 
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 		struct file *file, struct address_space *mapping)
150 {
151 	if (vma->vm_flags & VM_SHARED)
152 		mapping_unmap_writable(mapping);
153 
154 	flush_dcache_mmap_lock(mapping);
155 	vma_interval_tree_remove(vma, &mapping->i_mmap);
156 	flush_dcache_mmap_unlock(mapping);
157 }
158 
159 /*
160  * Unlink a file-based vm structure from its interval tree, to hide
161  * vma from rmap and vmtruncate before freeing its page tables.
162  */
unlink_file_vma(struct vm_area_struct * vma)163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 	struct file *file = vma->vm_file;
166 
167 	if (file) {
168 		struct address_space *mapping = file->f_mapping;
169 		i_mmap_lock_write(mapping);
170 		__remove_shared_vm_struct(vma, file, mapping);
171 		i_mmap_unlock_write(mapping);
172 	}
173 }
174 
175 /*
176  * Close a vm structure and free it, returning the next.
177  */
remove_vma(struct vm_area_struct * vma)178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 	struct vm_area_struct *next = vma->vm_next;
181 
182 	might_sleep();
183 	if (vma->vm_ops && vma->vm_ops->close)
184 		vma->vm_ops->close(vma);
185 	if (vma->vm_file)
186 		fput(vma->vm_file);
187 	mpol_put(vma_policy(vma));
188 	vm_area_free(vma);
189 	return next;
190 }
191 
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 	unsigned long newbrk, oldbrk, origbrk;
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *next;
199 	unsigned long min_brk;
200 	bool populate;
201 	bool downgraded = false;
202 	LIST_HEAD(uf);
203 
204 	if (mmap_write_lock_killable(mm)) ///申请写类型读写信号量
205 		return -EINTR;
206 
207 	origbrk = mm->brk;  ///brk记录当前进程动态分配区的底部
208 
209 #ifdef CONFIG_COMPAT_BRK
210 	/*
211 	 * CONFIG_COMPAT_BRK can still be overridden by setting
212 	 * randomize_va_space to 2, which will still cause mm->start_brk
213 	 * to be arbitrarily shifted
214 	 */
215 	if (current->brk_randomized)
216 		min_brk = mm->start_brk;
217 	else
218 		min_brk = mm->end_data;
219 #else
220 	min_brk = mm->start_brk;
221 #endif
222 	if (brk < min_brk)
223 		goto out;
224 
225 	/*
226 	 * Check against rlimit here. If this check is done later after the test
227 	 * of oldbrk with newbrk then it can escape the test and let the data
228 	 * segment grow beyond its set limit the in case where the limit is
229 	 * not page aligned -Ram Gupta
230 	 */
231 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 			      mm->end_data, mm->start_data))
233 		goto out;
234 
235 	newbrk = PAGE_ALIGN(brk);
236 	oldbrk = PAGE_ALIGN(mm->brk);
237 	if (oldbrk == newbrk) {
238 		mm->brk = brk;
239 		goto success;
240 	}
241 
242 	/*
243 	 * Always allow shrinking brk.
244 	 * __do_munmap() may downgrade mmap_lock to read.
245 	 */
246 	if (brk <= mm->brk) {  ///请求释放空间
247 		int ret;
248 
249 		/*
250 		 * mm->brk must to be protected by write mmap_lock so update it
251 		 * before downgrading mmap_lock. When __do_munmap() fails,
252 		 * mm->brk will be restored from origbrk.
253 		 */
254 		mm->brk = brk;
255 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 		if (ret < 0) {
257 			mm->brk = origbrk;
258 			goto out;
259 		} else if (ret == 1) {
260 			downgraded = true;
261 		}
262 		goto success;
263 	}
264 
265 	/* Check against existing mmap mappings. */
266 	next = find_vma(mm, oldbrk);
267 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) ///以旧边界地址去查找vma, 发现有重叠,不需要寻找
268 		goto out;
269 
270 	/* Ok, looks good - let it rip. */
271 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)  ///无重叠,新分配一个vma
272 		goto out;
273 	mm->brk = brk;   ///更新brk地址,即当前进程堆的起始地址
274 
275 success:
276 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;  ///调用mlockall()系统调用设置VM_LOCKED,锁住进程所有虚拟地址空间,防止内存被交换出去
277 	if (downgraded)
278 		mmap_read_unlock(mm);
279 	else
280 		mmap_write_unlock(mm);
281 	userfaultfd_unmap_complete(mm, &uf);
282 	if (populate)
283 		mm_populate(oldbrk, newbrk - oldbrk);   ///mm_populate会立刻分配物理内存
284 	return brk;
285 
286 out:
287 	mmap_write_unlock(mm);
288 	return origbrk;
289 }
290 
vma_compute_gap(struct vm_area_struct * vma)291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
292 {
293 	unsigned long gap, prev_end;
294 
295 	/*
296 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 	 * allow two stack_guard_gaps between them here, and when choosing
298 	 * an unmapped area; whereas when expanding we only require one.
299 	 * That's a little inconsistent, but keeps the code here simpler.
300 	 */
301 	gap = vm_start_gap(vma);
302 	if (vma->vm_prev) {
303 		prev_end = vm_end_gap(vma->vm_prev);
304 		if (gap > prev_end)
305 			gap -= prev_end;
306 		else
307 			gap = 0;
308 	}
309 	return gap;
310 }
311 
312 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
314 {
315 	unsigned long max = vma_compute_gap(vma), subtree_gap;
316 	if (vma->vm_rb.rb_left) {
317 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
318 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 		if (subtree_gap > max)
320 			max = subtree_gap;
321 	}
322 	if (vma->vm_rb.rb_right) {
323 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
324 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 		if (subtree_gap > max)
326 			max = subtree_gap;
327 	}
328 	return max;
329 }
330 
browse_rb(struct mm_struct * mm)331 static int browse_rb(struct mm_struct *mm)
332 {
333 	struct rb_root *root = &mm->mm_rb;
334 	int i = 0, j, bug = 0;
335 	struct rb_node *nd, *pn = NULL;
336 	unsigned long prev = 0, pend = 0;
337 
338 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 		struct vm_area_struct *vma;
340 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 		if (vma->vm_start < prev) {
342 			pr_emerg("vm_start %lx < prev %lx\n",
343 				  vma->vm_start, prev);
344 			bug = 1;
345 		}
346 		if (vma->vm_start < pend) {
347 			pr_emerg("vm_start %lx < pend %lx\n",
348 				  vma->vm_start, pend);
349 			bug = 1;
350 		}
351 		if (vma->vm_start > vma->vm_end) {
352 			pr_emerg("vm_start %lx > vm_end %lx\n",
353 				  vma->vm_start, vma->vm_end);
354 			bug = 1;
355 		}
356 		spin_lock(&mm->page_table_lock);
357 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
358 			pr_emerg("free gap %lx, correct %lx\n",
359 			       vma->rb_subtree_gap,
360 			       vma_compute_subtree_gap(vma));
361 			bug = 1;
362 		}
363 		spin_unlock(&mm->page_table_lock);
364 		i++;
365 		pn = nd;
366 		prev = vma->vm_start;
367 		pend = vma->vm_end;
368 	}
369 	j = 0;
370 	for (nd = pn; nd; nd = rb_prev(nd))
371 		j++;
372 	if (i != j) {
373 		pr_emerg("backwards %d, forwards %d\n", j, i);
374 		bug = 1;
375 	}
376 	return bug ? -1 : i;
377 }
378 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 {
381 	struct rb_node *nd;
382 
383 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 		struct vm_area_struct *vma;
385 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 		VM_BUG_ON_VMA(vma != ignore &&
387 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
388 			vma);
389 	}
390 }
391 
validate_mm(struct mm_struct * mm)392 static void validate_mm(struct mm_struct *mm)
393 {
394 	int bug = 0;
395 	int i = 0;
396 	unsigned long highest_address = 0;
397 	struct vm_area_struct *vma = mm->mmap;
398 
399 	while (vma) {
400 		struct anon_vma *anon_vma = vma->anon_vma;
401 		struct anon_vma_chain *avc;
402 
403 		if (anon_vma) {
404 			anon_vma_lock_read(anon_vma);
405 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
406 				anon_vma_interval_tree_verify(avc);
407 			anon_vma_unlock_read(anon_vma);
408 		}
409 
410 		highest_address = vm_end_gap(vma);
411 		vma = vma->vm_next;
412 		i++;
413 	}
414 	if (i != mm->map_count) {
415 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416 		bug = 1;
417 	}
418 	if (highest_address != mm->highest_vm_end) {
419 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
420 			  mm->highest_vm_end, highest_address);
421 		bug = 1;
422 	}
423 	i = browse_rb(mm);
424 	if (i != mm->map_count) {
425 		if (i != -1)
426 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427 		bug = 1;
428 	}
429 	VM_BUG_ON_MM(bug, mm);
430 }
431 #else
432 #define validate_mm_rb(root, ignore) do { } while (0)
433 #define validate_mm(mm) do { } while (0)
434 #endif
435 
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
437 			 struct vm_area_struct, vm_rb,
438 			 unsigned long, rb_subtree_gap, vma_compute_gap)
439 
440 /*
441  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
442  * vma->vm_prev->vm_end values changed, without modifying the vma's position
443  * in the rbtree.
444  */
445 static void vma_gap_update(struct vm_area_struct *vma)
446 {
447 	/*
448 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
449 	 * a callback function that does exactly what we want.
450 	 */
451 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 }
453 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)454 static inline void vma_rb_insert(struct vm_area_struct *vma,
455 				 struct rb_root *root)
456 {
457 	/* All rb_subtree_gap values must be consistent prior to insertion */
458 	validate_mm_rb(root, NULL);
459 
460 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 }
462 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 {
465 	/*
466 	 * Note rb_erase_augmented is a fairly large inline function,
467 	 * so make sure we instantiate it only once with our desired
468 	 * augmented rbtree callbacks.
469 	 */
470 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 }
472 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
474 						struct rb_root *root,
475 						struct vm_area_struct *ignore)
476 {
477 	/*
478 	 * All rb_subtree_gap values must be consistent prior to erase,
479 	 * with the possible exception of
480 	 *
481 	 * a. the "next" vma being erased if next->vm_start was reduced in
482 	 *    __vma_adjust() -> __vma_unlink()
483 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
484 	 *    vma_rb_erase()
485 	 */
486 	validate_mm_rb(root, ignore);
487 
488 	__vma_rb_erase(vma, root);
489 }
490 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
492 					 struct rb_root *root)
493 {
494 	vma_rb_erase_ignore(vma, root, vma);
495 }
496 
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 	struct anon_vma_chain *avc;
515 
516 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519 
520 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 	struct anon_vma_chain *avc;
524 
525 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 		unsigned long end, struct vm_area_struct **pprev,
531 		struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 
535 	mmap_assert_locked(mm);
536 	__rb_link = &mm->mm_rb.rb_node;
537 	rb_prev = __rb_parent = NULL;
538 
539 	while (*__rb_link) {
540 		struct vm_area_struct *vma_tmp;
541 
542 		__rb_parent = *__rb_link;
543 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544 
545 		if (vma_tmp->vm_end > addr) {
546 			/* Fail if an existing vma overlaps the area */
547 			if (vma_tmp->vm_start < end)   ///发现有VMA地址重叠
548 				return -ENOMEM;
549 			__rb_link = &__rb_parent->rb_left;
550 		} else {
551 			rb_prev = __rb_parent;
552 			__rb_link = &__rb_parent->rb_right;
553 		}
554 	}
555 
556 	*pprev = NULL;
557 	if (rb_prev)
558 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
559 	*rb_link = __rb_link;
560 	*rb_parent = __rb_parent;
561 	return 0;
562 }
563 
564 /*
565  * vma_next() - Get the next VMA.
566  * @mm: The mm_struct.
567  * @vma: The current vma.
568  *
569  * If @vma is NULL, return the first vma in the mm.
570  *
571  * Returns: The next VMA after @vma.
572  */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
574 					 struct vm_area_struct *vma)
575 {
576 	if (!vma)
577 		return mm->mmap;
578 
579 	return vma->vm_next;
580 }
581 
582 /*
583  * munmap_vma_range() - munmap VMAs that overlap a range.
584  * @mm: The mm struct
585  * @start: The start of the range.
586  * @len: The length of the range.
587  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
588  * @rb_link: the rb_node
589  * @rb_parent: the parent rb_node
590  *
591  * Find all the vm_area_struct that overlap from @start to
592  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
593  *
594  * Returns: -ENOMEM on munmap failure or 0 on success.
595  */
596 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
598 		 struct vm_area_struct **pprev, struct rb_node ***link,
599 		 struct rb_node **parent, struct list_head *uf)
600 {
601 
602 	while (find_vma_links(mm, start, start + len, pprev, link, parent)) ///寻找适合插入的红黑树节点
603 		if (do_munmap(mm, start, len, uf))
604 			return -ENOMEM;
605 
606 	return 0;
607 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)608 static unsigned long count_vma_pages_range(struct mm_struct *mm,
609 		unsigned long addr, unsigned long end)
610 {
611 	unsigned long nr_pages = 0;
612 	struct vm_area_struct *vma;
613 
614 	/* Find first overlapping mapping */
615 	vma = find_vma_intersection(mm, addr, end);
616 	if (!vma)
617 		return 0;
618 
619 	nr_pages = (min(end, vma->vm_end) -
620 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
621 
622 	/* Iterate over the rest of the overlaps */
623 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
624 		unsigned long overlap_len;
625 
626 		if (vma->vm_start > end)
627 			break;
628 
629 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
630 		nr_pages += overlap_len >> PAGE_SHIFT;
631 	}
632 
633 	return nr_pages;
634 }
635 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
637 		struct rb_node **rb_link, struct rb_node *rb_parent)
638 {
639 	/* Update tracking information for the gap following the new vma. */
640 	if (vma->vm_next)
641 		vma_gap_update(vma->vm_next);
642 	else
643 		mm->highest_vm_end = vm_end_gap(vma);
644 
645 	/*
646 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
647 	 * correct insertion point for that vma. As a result, we could not
648 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
649 	 * So, we first insert the vma with a zero rb_subtree_gap value
650 	 * (to be consistent with what we did on the way down), and then
651 	 * immediately update the gap to the correct value. Finally we
652 	 * rebalance the rbtree after all augmented values have been set.
653 	 */
654 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
655 	vma->rb_subtree_gap = 0;
656 	vma_gap_update(vma);
657 	vma_rb_insert(vma, &mm->mm_rb);
658 }
659 
__vma_link_file(struct vm_area_struct * vma)660 static void __vma_link_file(struct vm_area_struct *vma)
661 {
662 	struct file *file;
663 
664 	file = vma->vm_file;
665 	if (file) {
666 		struct address_space *mapping = file->f_mapping;
667 
668 		if (vma->vm_flags & VM_SHARED)
669 			mapping_allow_writable(mapping);
670 
671 		flush_dcache_mmap_lock(mapping);
672 		///mmap文件的vma加入文件inode的红黑树
673 		vma_interval_tree_insert(vma, &mapping->i_mmap);
674 		flush_dcache_mmap_unlock(mapping);
675 	}
676 }
677 
678 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680 	struct vm_area_struct *prev, struct rb_node **rb_link,
681 	struct rb_node *rb_parent)
682 {
683 	__vma_link_list(mm, vma, prev);              ///vma插入mmap链表
684 	__vma_link_rb(mm, vma, rb_link, rb_parent);  ///vma插入红黑树
685 }
686 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688 			struct vm_area_struct *prev, struct rb_node **rb_link,
689 			struct rb_node *rb_parent)
690 {
691 	struct address_space *mapping = NULL;
692 
693 	if (vma->vm_file) {
694 		mapping = vma->vm_file->f_mapping;
695 		i_mmap_lock_write(mapping);
696 	}
697 
698 	__vma_link(mm, vma, prev, rb_link, rb_parent);
699 	///vma添加到inode红黑树
700 	__vma_link_file(vma);
701 
702 	if (mapping)
703 		i_mmap_unlock_write(mapping);
704 
705 	mm->map_count++;
706 	validate_mm(mm);
707 }
708 
709 /*
710  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
711  * mm's list and rbtree.  It has already been inserted into the interval tree.
712  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)713 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
714 {
715 	struct vm_area_struct *prev;
716 	struct rb_node **rb_link, *rb_parent;
717 
718 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
719 			   &prev, &rb_link, &rb_parent))
720 		BUG();
721 	__vma_link(mm, vma, prev, rb_link, rb_parent);
722 	mm->map_count++;
723 }
724 
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)725 static __always_inline void __vma_unlink(struct mm_struct *mm,
726 						struct vm_area_struct *vma,
727 						struct vm_area_struct *ignore)
728 {
729 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
730 	__vma_unlink_list(mm, vma);
731 	/* Kill the cache */
732 	vmacache_invalidate(mm);
733 }
734 
735 /*
736  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
737  * is already present in an i_mmap tree without adjusting the tree.
738  * The following helper function should be used when such adjustments
739  * are necessary.  The "insert" vma (if any) is to be inserted
740  * before we drop the necessary locks.
741  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)742 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
743 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
744 	struct vm_area_struct *expand)
745 {
746 	struct mm_struct *mm = vma->vm_mm;
747 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
748 	struct address_space *mapping = NULL;
749 	struct rb_root_cached *root = NULL;
750 	struct anon_vma *anon_vma = NULL;
751 	struct file *file = vma->vm_file;
752 	bool start_changed = false, end_changed = false;
753 	long adjust_next = 0;
754 	int remove_next = 0;
755 
756 	if (next && !insert) {
757 		struct vm_area_struct *exporter = NULL, *importer = NULL;
758 
759 		if (end >= next->vm_end) {
760 			/*
761 			 * vma expands, overlapping all the next, and
762 			 * perhaps the one after too (mprotect case 6).
763 			 * The only other cases that gets here are
764 			 * case 1, case 7 and case 8.
765 			 */
766 			if (next == expand) {
767 				/*
768 				 * The only case where we don't expand "vma"
769 				 * and we expand "next" instead is case 8.
770 				 */
771 				VM_WARN_ON(end != next->vm_end);
772 				/*
773 				 * remove_next == 3 means we're
774 				 * removing "vma" and that to do so we
775 				 * swapped "vma" and "next".
776 				 */
777 				remove_next = 3;
778 				VM_WARN_ON(file != next->vm_file);
779 				swap(vma, next);
780 			} else {
781 				VM_WARN_ON(expand != vma);
782 				/*
783 				 * case 1, 6, 7, remove_next == 2 is case 6,
784 				 * remove_next == 1 is case 1 or 7.
785 				 */
786 				remove_next = 1 + (end > next->vm_end);
787 				VM_WARN_ON(remove_next == 2 &&
788 					   end != next->vm_next->vm_end);
789 				/* trim end to next, for case 6 first pass */
790 				end = next->vm_end;
791 			}
792 
793 			exporter = next;
794 			importer = vma;
795 
796 			/*
797 			 * If next doesn't have anon_vma, import from vma after
798 			 * next, if the vma overlaps with it.
799 			 */
800 			if (remove_next == 2 && !next->anon_vma)
801 				exporter = next->vm_next;
802 
803 		} else if (end > next->vm_start) {
804 			/*
805 			 * vma expands, overlapping part of the next:
806 			 * mprotect case 5 shifting the boundary up.
807 			 */
808 			adjust_next = (end - next->vm_start);
809 			exporter = next;
810 			importer = vma;
811 			VM_WARN_ON(expand != importer);
812 		} else if (end < vma->vm_end) {
813 			/*
814 			 * vma shrinks, and !insert tells it's not
815 			 * split_vma inserting another: so it must be
816 			 * mprotect case 4 shifting the boundary down.
817 			 */
818 			adjust_next = -(vma->vm_end - end);
819 			exporter = vma;
820 			importer = next;
821 			VM_WARN_ON(expand != importer);
822 		}
823 
824 		/*
825 		 * Easily overlooked: when mprotect shifts the boundary,
826 		 * make sure the expanding vma has anon_vma set if the
827 		 * shrinking vma had, to cover any anon pages imported.
828 		 */
829 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
830 			int error;
831 
832 			importer->anon_vma = exporter->anon_vma;
833 			error = anon_vma_clone(importer, exporter);
834 			if (error)
835 				return error;
836 		}
837 	}
838 again:
839 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
840 
841 	if (file) {
842 		mapping = file->f_mapping;
843 		root = &mapping->i_mmap;
844 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
845 
846 		if (adjust_next)
847 			uprobe_munmap(next, next->vm_start, next->vm_end);
848 
849 		i_mmap_lock_write(mapping);
850 		if (insert) {
851 			/*
852 			 * Put into interval tree now, so instantiated pages
853 			 * are visible to arm/parisc __flush_dcache_page
854 			 * throughout; but we cannot insert into address
855 			 * space until vma start or end is updated.
856 			 */
857 			__vma_link_file(insert);
858 		}
859 	}
860 
861 	anon_vma = vma->anon_vma;
862 	if (!anon_vma && adjust_next)
863 		anon_vma = next->anon_vma;
864 	if (anon_vma) {
865 		VM_WARN_ON(adjust_next && next->anon_vma &&
866 			   anon_vma != next->anon_vma);
867 		anon_vma_lock_write(anon_vma);
868 		anon_vma_interval_tree_pre_update_vma(vma);
869 		if (adjust_next)
870 			anon_vma_interval_tree_pre_update_vma(next);
871 	}
872 
873 	if (file) {
874 		flush_dcache_mmap_lock(mapping);
875 		vma_interval_tree_remove(vma, root);
876 		if (adjust_next)
877 			vma_interval_tree_remove(next, root);
878 	}
879 
880 	if (start != vma->vm_start) {
881 		vma->vm_start = start;
882 		start_changed = true;
883 	}
884 	if (end != vma->vm_end) {
885 		vma->vm_end = end;
886 		end_changed = true;
887 	}
888 	vma->vm_pgoff = pgoff;
889 	if (adjust_next) {
890 		next->vm_start += adjust_next;
891 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
892 	}
893 
894 	if (file) {
895 		if (adjust_next)
896 			vma_interval_tree_insert(next, root);
897 		vma_interval_tree_insert(vma, root);
898 		flush_dcache_mmap_unlock(mapping);
899 	}
900 
901 	if (remove_next) {
902 		/*
903 		 * vma_merge has merged next into vma, and needs
904 		 * us to remove next before dropping the locks.
905 		 */
906 		if (remove_next != 3)
907 			__vma_unlink(mm, next, next);
908 		else
909 			/*
910 			 * vma is not before next if they've been
911 			 * swapped.
912 			 *
913 			 * pre-swap() next->vm_start was reduced so
914 			 * tell validate_mm_rb to ignore pre-swap()
915 			 * "next" (which is stored in post-swap()
916 			 * "vma").
917 			 */
918 			__vma_unlink(mm, next, vma);
919 		if (file)
920 			__remove_shared_vm_struct(next, file, mapping);
921 	} else if (insert) {
922 		/*
923 		 * split_vma has split insert from vma, and needs
924 		 * us to insert it before dropping the locks
925 		 * (it may either follow vma or precede it).
926 		 */
927 		__insert_vm_struct(mm, insert);
928 	} else {
929 		if (start_changed)
930 			vma_gap_update(vma);
931 		if (end_changed) {
932 			if (!next)
933 				mm->highest_vm_end = vm_end_gap(vma);
934 			else if (!adjust_next)
935 				vma_gap_update(next);
936 		}
937 	}
938 
939 	if (anon_vma) {
940 		anon_vma_interval_tree_post_update_vma(vma);
941 		if (adjust_next)
942 			anon_vma_interval_tree_post_update_vma(next);
943 		anon_vma_unlock_write(anon_vma);
944 	}
945 
946 	if (file) {
947 		i_mmap_unlock_write(mapping);
948 		uprobe_mmap(vma);
949 
950 		if (adjust_next)
951 			uprobe_mmap(next);
952 	}
953 
954 	if (remove_next) {
955 		if (file) {
956 			uprobe_munmap(next, next->vm_start, next->vm_end);
957 			fput(file);
958 		}
959 		if (next->anon_vma)
960 			anon_vma_merge(vma, next);
961 		mm->map_count--;
962 		mpol_put(vma_policy(next));
963 		vm_area_free(next);
964 		/*
965 		 * In mprotect's case 6 (see comments on vma_merge),
966 		 * we must remove another next too. It would clutter
967 		 * up the code too much to do both in one go.
968 		 */
969 		if (remove_next != 3) {
970 			/*
971 			 * If "next" was removed and vma->vm_end was
972 			 * expanded (up) over it, in turn
973 			 * "next->vm_prev->vm_end" changed and the
974 			 * "vma->vm_next" gap must be updated.
975 			 */
976 			next = vma->vm_next;
977 		} else {
978 			/*
979 			 * For the scope of the comment "next" and
980 			 * "vma" considered pre-swap(): if "vma" was
981 			 * removed, next->vm_start was expanded (down)
982 			 * over it and the "next" gap must be updated.
983 			 * Because of the swap() the post-swap() "vma"
984 			 * actually points to pre-swap() "next"
985 			 * (post-swap() "next" as opposed is now a
986 			 * dangling pointer).
987 			 */
988 			next = vma;
989 		}
990 		if (remove_next == 2) {
991 			remove_next = 1;
992 			end = next->vm_end;
993 			goto again;
994 		}
995 		else if (next)
996 			vma_gap_update(next);
997 		else {
998 			/*
999 			 * If remove_next == 2 we obviously can't
1000 			 * reach this path.
1001 			 *
1002 			 * If remove_next == 3 we can't reach this
1003 			 * path because pre-swap() next is always not
1004 			 * NULL. pre-swap() "next" is not being
1005 			 * removed and its next->vm_end is not altered
1006 			 * (and furthermore "end" already matches
1007 			 * next->vm_end in remove_next == 3).
1008 			 *
1009 			 * We reach this only in the remove_next == 1
1010 			 * case if the "next" vma that was removed was
1011 			 * the highest vma of the mm. However in such
1012 			 * case next->vm_end == "end" and the extended
1013 			 * "vma" has vma->vm_end == next->vm_end so
1014 			 * mm->highest_vm_end doesn't need any update
1015 			 * in remove_next == 1 case.
1016 			 */
1017 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1018 		}
1019 	}
1020 	if (insert && file)
1021 		uprobe_mmap(insert);
1022 
1023 	validate_mm(mm);
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * If the vma has a ->close operation then the driver probably needs to release
1030  * per-vma resources, so we don't attempt to merge those.
1031  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1032 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1033 				struct file *file, unsigned long vm_flags,
1034 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1035 {
1036 	/*
1037 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1038 	 * match the flags but dirty bit -- the caller should mark
1039 	 * merged VMA as dirty. If dirty bit won't be excluded from
1040 	 * comparison, we increase pressure on the memory system forcing
1041 	 * the kernel to generate new VMAs when old one could be
1042 	 * extended instead.
1043 	 */
1044 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1045 		return 0;
1046 	if (vma->vm_file != file)
1047 		return 0;
1048 	if (vma->vm_ops && vma->vm_ops->close)
1049 		return 0;
1050 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1051 		return 0;
1052 	return 1;
1053 }
1054 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1055 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1056 					struct anon_vma *anon_vma2,
1057 					struct vm_area_struct *vma)
1058 {
1059 	/*
1060 	 * The list_is_singular() test is to avoid merging VMA cloned from
1061 	 * parents. This can improve scalability caused by anon_vma lock.
1062 	 */
1063 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1064 		list_is_singular(&vma->anon_vma_chain)))
1065 		return 1;
1066 	return anon_vma1 == anon_vma2;
1067 }
1068 
1069 /*
1070  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071  * in front of (at a lower virtual address and file offset than) the vma.
1072  *
1073  * We cannot merge two vmas if they have differently assigned (non-NULL)
1074  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1075  *
1076  * We don't check here for the merged mmap wrapping around the end of pagecache
1077  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1078  * wrap, nor mmaps which cover the final page at index -1UL.
1079  */
1080 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1081 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1082 		     struct anon_vma *anon_vma, struct file *file,
1083 		     pgoff_t vm_pgoff,
1084 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1085 {
1086 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1087 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1088 		if (vma->vm_pgoff == vm_pgoff)
1089 			return 1;
1090 	}
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1096  * beyond (at a higher virtual address and file offset than) the vma.
1097  *
1098  * We cannot merge two vmas if they have differently assigned (non-NULL)
1099  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1100  */
1101 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1102 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1103 		    struct anon_vma *anon_vma, struct file *file,
1104 		    pgoff_t vm_pgoff,
1105 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1106 {
1107 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1108 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1109 		pgoff_t vm_pglen;
1110 		vm_pglen = vma_pages(vma);
1111 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1112 			return 1;
1113 	}
1114 	return 0;
1115 }
1116 
1117 /*
1118  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1119  * whether that can be merged with its predecessor or its successor.
1120  * Or both (it neatly fills a hole).
1121  *
1122  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1123  * certain not to be mapped by the time vma_merge is called; but when
1124  * called for mprotect, it is certain to be already mapped (either at
1125  * an offset within prev, or at the start of next), and the flags of
1126  * this area are about to be changed to vm_flags - and the no-change
1127  * case has already been eliminated.
1128  *
1129  * The following mprotect cases have to be considered, where AAAA is
1130  * the area passed down from mprotect_fixup, never extending beyond one
1131  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1132  *
1133  *     AAAA             AAAA                   AAAA
1134  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1135  *    cannot merge    might become       might become
1136  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1137  *    mmap, brk or    case 4 below       case 5 below
1138  *    mremap move:
1139  *                        AAAA               AAAA
1140  *                    PPPP    NNNN       PPPPNNNNXXXX
1141  *                    might become       might become
1142  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1143  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1144  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1145  *
1146  * It is important for case 8 that the vma NNNN overlapping the
1147  * region AAAA is never going to extended over XXXX. Instead XXXX must
1148  * be extended in region AAAA and NNNN must be removed. This way in
1149  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1150  * rmap_locks, the properties of the merged vma will be already
1151  * correct for the whole merged range. Some of those properties like
1152  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1153  * be correct for the whole merged range immediately after the
1154  * rmap_locks are released. Otherwise if XXXX would be removed and
1155  * NNNN would be extended over the XXXX range, remove_migration_ptes
1156  * or other rmap walkers (if working on addresses beyond the "end"
1157  * parameter) may establish ptes with the wrong permissions of NNNN
1158  * instead of the right permissions of XXXX.
1159  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1160 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1161 			struct vm_area_struct *prev, unsigned long addr,
1162 			unsigned long end, unsigned long vm_flags,
1163 			struct anon_vma *anon_vma, struct file *file,
1164 			pgoff_t pgoff, struct mempolicy *policy,
1165 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1166 {
1167 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1168 	struct vm_area_struct *area, *next;
1169 	int err;
1170 
1171 	/*
1172 	 * We later require that vma->vm_flags == vm_flags,
1173 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1174 	 */
1175 	if (vm_flags & VM_SPECIAL)
1176 		return NULL;
1177 
1178 	next = vma_next(mm, prev);
1179 	area = next;
1180 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1181 		next = next->vm_next;
1182 
1183 	/* verify some invariant that must be enforced by the caller */
1184 	VM_WARN_ON(prev && addr <= prev->vm_start);
1185 	VM_WARN_ON(area && end > area->vm_end);
1186 	VM_WARN_ON(addr >= end);
1187 
1188 	/*
1189 	 * Can it merge with the predecessor?
1190 	 */
1191 	if (prev && prev->vm_end == addr &&
1192 			mpol_equal(vma_policy(prev), policy) &&
1193 			can_vma_merge_after(prev, vm_flags,
1194 					    anon_vma, file, pgoff,
1195 					    vm_userfaultfd_ctx)) {
1196 		/*
1197 		 * OK, it can.  Can we now merge in the successor as well?
1198 		 */
1199 		if (next && end == next->vm_start &&
1200 				mpol_equal(policy, vma_policy(next)) &&
1201 				can_vma_merge_before(next, vm_flags,
1202 						     anon_vma, file,
1203 						     pgoff+pglen,
1204 						     vm_userfaultfd_ctx) &&
1205 				is_mergeable_anon_vma(prev->anon_vma,
1206 						      next->anon_vma, NULL)) {
1207 							/* cases 1, 6 */
1208 			err = __vma_adjust(prev, prev->vm_start,
1209 					 next->vm_end, prev->vm_pgoff, NULL,
1210 					 prev);
1211 		} else					/* cases 2, 5, 7 */
1212 			err = __vma_adjust(prev, prev->vm_start,
1213 					 end, prev->vm_pgoff, NULL, prev);
1214 		if (err)
1215 			return NULL;
1216 		khugepaged_enter_vma_merge(prev, vm_flags);
1217 		return prev;
1218 	}
1219 
1220 	/*
1221 	 * Can this new request be merged in front of next?
1222 	 */
1223 	if (next && end == next->vm_start &&
1224 			mpol_equal(policy, vma_policy(next)) &&
1225 			can_vma_merge_before(next, vm_flags,
1226 					     anon_vma, file, pgoff+pglen,
1227 					     vm_userfaultfd_ctx)) {
1228 		if (prev && addr < prev->vm_end)	/* case 4 */
1229 			err = __vma_adjust(prev, prev->vm_start,
1230 					 addr, prev->vm_pgoff, NULL, next);
1231 		else {					/* cases 3, 8 */
1232 			err = __vma_adjust(area, addr, next->vm_end,
1233 					 next->vm_pgoff - pglen, NULL, next);
1234 			/*
1235 			 * In case 3 area is already equal to next and
1236 			 * this is a noop, but in case 8 "area" has
1237 			 * been removed and next was expanded over it.
1238 			 */
1239 			area = next;
1240 		}
1241 		if (err)
1242 			return NULL;
1243 		khugepaged_enter_vma_merge(area, vm_flags);
1244 		return area;
1245 	}
1246 
1247 	return NULL;
1248 }
1249 
1250 /*
1251  * Rough compatibility check to quickly see if it's even worth looking
1252  * at sharing an anon_vma.
1253  *
1254  * They need to have the same vm_file, and the flags can only differ
1255  * in things that mprotect may change.
1256  *
1257  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1258  * we can merge the two vma's. For example, we refuse to merge a vma if
1259  * there is a vm_ops->close() function, because that indicates that the
1260  * driver is doing some kind of reference counting. But that doesn't
1261  * really matter for the anon_vma sharing case.
1262  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1263 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1264 {
1265 	return a->vm_end == b->vm_start &&
1266 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1267 		a->vm_file == b->vm_file &&
1268 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1269 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1270 }
1271 
1272 /*
1273  * Do some basic sanity checking to see if we can re-use the anon_vma
1274  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1275  * the same as 'old', the other will be the new one that is trying
1276  * to share the anon_vma.
1277  *
1278  * NOTE! This runs with mm_sem held for reading, so it is possible that
1279  * the anon_vma of 'old' is concurrently in the process of being set up
1280  * by another page fault trying to merge _that_. But that's ok: if it
1281  * is being set up, that automatically means that it will be a singleton
1282  * acceptable for merging, so we can do all of this optimistically. But
1283  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1284  *
1285  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1286  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1287  * is to return an anon_vma that is "complex" due to having gone through
1288  * a fork).
1289  *
1290  * We also make sure that the two vma's are compatible (adjacent,
1291  * and with the same memory policies). That's all stable, even with just
1292  * a read lock on the mm_sem.
1293  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1294 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1295 {
1296 	if (anon_vma_compatible(a, b)) {
1297 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1298 
1299 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1300 			return anon_vma;
1301 	}
1302 	return NULL;
1303 }
1304 
1305 /*
1306  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1307  * neighbouring vmas for a suitable anon_vma, before it goes off
1308  * to allocate a new anon_vma.  It checks because a repetitive
1309  * sequence of mprotects and faults may otherwise lead to distinct
1310  * anon_vmas being allocated, preventing vma merge in subsequent
1311  * mprotect.
1312  */
1313  ///复用条件:两个vma必须相邻,VMA的内存policy相同,vm_file相同等。
find_mergeable_anon_vma(struct vm_area_struct * vma)1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316 	struct anon_vma *anon_vma = NULL;
1317 
1318 	/* Try next first. */
1319 	if (vma->vm_next) {
1320 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321 		if (anon_vma)
1322 			return anon_vma;
1323 	}
1324 
1325 	/* Try prev next. */
1326 	if (vma->vm_prev)
1327 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328 
1329 	/*
1330 	 * We might reach here with anon_vma == NULL if we can't find
1331 	 * any reusable anon_vma.
1332 	 * There's no absolute need to look only at touching neighbours:
1333 	 * we could search further afield for "compatible" anon_vmas.
1334 	 * But it would probably just be a waste of time searching,
1335 	 * or lead to too many vmas hanging off the same anon_vma.
1336 	 * We're trying to allow mprotect remerging later on,
1337 	 * not trying to minimize memory used for anon_vmas.
1338 	 */
1339 	return anon_vma;
1340 }
1341 
1342 /*
1343  * If a hint addr is less than mmap_min_addr change hint to be as
1344  * low as possible but still greater than mmap_min_addr
1345  */
round_hint_to_min(unsigned long hint)1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348 	hint &= PAGE_MASK;
1349 	if (((void *)hint != NULL) &&
1350 	    (hint < mmap_min_addr))
1351 		return PAGE_ALIGN(mmap_min_addr);
1352 	return hint;
1353 }
1354 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1355 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1356 		       unsigned long len)
1357 {
1358 	unsigned long locked, lock_limit;
1359 
1360 	/*  mlock MCL_FUTURE? */
1361 	if (flags & VM_LOCKED) {
1362 		locked = len >> PAGE_SHIFT;
1363 		locked += mm->locked_vm;
1364 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1365 		lock_limit >>= PAGE_SHIFT;
1366 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1367 			return -EAGAIN;
1368 	}
1369 	return 0;
1370 }
1371 
file_mmap_size_max(struct file * file,struct inode * inode)1372 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1373 {
1374 	if (S_ISREG(inode->i_mode))
1375 		return MAX_LFS_FILESIZE;
1376 
1377 	if (S_ISBLK(inode->i_mode))
1378 		return MAX_LFS_FILESIZE;
1379 
1380 	if (S_ISSOCK(inode->i_mode))
1381 		return MAX_LFS_FILESIZE;
1382 
1383 	/* Special "we do even unsigned file positions" case */
1384 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1385 		return 0;
1386 
1387 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1388 	return ULONG_MAX;
1389 }
1390 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1391 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1392 				unsigned long pgoff, unsigned long len)
1393 {
1394 	u64 maxsize = file_mmap_size_max(file, inode);
1395 
1396 	if (maxsize && len > maxsize)
1397 		return false;
1398 	maxsize -= len;
1399 	if (pgoff > maxsize >> PAGE_SHIFT)
1400 		return false;
1401 	return true;
1402 }
1403 
1404 /*
1405  * The caller must write-lock current->mm->mmap_lock.
1406  */
1407  ///mmap底层实现
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409 			unsigned long len, unsigned long prot,
1410 			unsigned long flags, unsigned long pgoff,
1411 			unsigned long *populate, struct list_head *uf)
1412 {
1413 	struct mm_struct *mm = current->mm;
1414 	vm_flags_t vm_flags;
1415 	int pkey = 0;
1416 
1417 	*populate = 0;
1418 
1419 	if (!len)
1420 		return -EINVAL;
1421 
1422 	/*
1423 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1424 	 *
1425 	 * (the exception is when the underlying filesystem is noexec
1426 	 *  mounted, in which case we dont add PROT_EXEC.)
1427 	 */
1428 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429 		if (!(file && path_noexec(&file->f_path)))
1430 			prot |= PROT_EXEC;
1431 
1432 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1433 	if (flags & MAP_FIXED_NOREPLACE)
1434 		flags |= MAP_FIXED;
1435 
1436 	if (!(flags & MAP_FIXED))
1437 		addr = round_hint_to_min(addr);
1438 
1439 	/* Careful about overflows.. */
1440 	len = PAGE_ALIGN(len);
1441 	if (!len)
1442 		return -ENOMEM;
1443 
1444 	/* offset overflow? */
1445 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446 		return -EOVERFLOW;
1447 
1448 	/* Too many mappings? */
1449 	if (mm->map_count > sysctl_max_map_count)
1450 		return -ENOMEM;
1451 
1452 	/* Obtain the address to map to. we verify (or select) it and ensure
1453 	 * that it represents a valid section of the address space.
1454 	 */
1455 	 ///找到一个未被使用,并且足够大的虚拟地址空间
1456 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1457 	if (IS_ERR_VALUE(addr))
1458 		return addr;
1459 
1460 	if (flags & MAP_FIXED_NOREPLACE) {
1461 		if (find_vma_intersection(mm, addr, addr + len))
1462 			return -EEXIST;
1463 	}
1464 
1465 	if (prot == PROT_EXEC) {
1466 		pkey = execute_only_pkey(mm);
1467 		if (pkey < 0)
1468 			pkey = 0;
1469 	}
1470 
1471 	/* Do simple checking here so the lower-level routines won't have
1472 	 * to. we assume access permissions have been handled by the open
1473 	 * of the memory object, so we don't do any here.
1474 	 */
1475 	 ///设置内存属性
1476 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1477 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1478 
1479 	if (flags & MAP_LOCKED)
1480 		if (!can_do_mlock())
1481 			return -EPERM;
1482 
1483 	if (mlock_future_check(mm, vm_flags, len))
1484 		return -EAGAIN;
1485 
1486 	if (file) {
1487 		///如果是文件映射,找到inode,作进一步检查
1488 		struct inode *inode = file_inode(file);
1489 		unsigned long flags_mask;
1490 
1491 		if (!file_mmap_ok(file, inode, pgoff, len))
1492 			return -EOVERFLOW;
1493 
1494 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1495 
1496 		switch (flags & MAP_TYPE) {
1497 		case MAP_SHARED:
1498 			/*
1499 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1500 			 * flags. E.g. MAP_SYNC is dangerous to use with
1501 			 * MAP_SHARED as you don't know which consistency model
1502 			 * you will get. We silently ignore unsupported flags
1503 			 * with MAP_SHARED to preserve backward compatibility.
1504 			 */
1505 			flags &= LEGACY_MAP_MASK;
1506 			fallthrough;
1507 		case MAP_SHARED_VALIDATE:
1508 			if (flags & ~flags_mask)
1509 				return -EOPNOTSUPP;
1510 			if (prot & PROT_WRITE) {
1511 				if (!(file->f_mode & FMODE_WRITE))
1512 					return -EACCES;
1513 				if (IS_SWAPFILE(file->f_mapping->host))
1514 					return -ETXTBSY;
1515 			}
1516 
1517 			/*
1518 			 * Make sure we don't allow writing to an append-only
1519 			 * file..
1520 			 */
1521 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1522 				return -EACCES;
1523 
1524 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1525 			if (!(file->f_mode & FMODE_WRITE))
1526 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1527 			fallthrough;
1528 		case MAP_PRIVATE:
1529 			if (!(file->f_mode & FMODE_READ))
1530 				return -EACCES;
1531 			if (path_noexec(&file->f_path)) {
1532 				if (vm_flags & VM_EXEC)
1533 					return -EPERM;
1534 				vm_flags &= ~VM_MAYEXEC;
1535 			}
1536 
1537 			if (!file->f_op->mmap)
1538 				return -ENODEV;
1539 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1540 				return -EINVAL;
1541 			break;
1542 
1543 		default:
1544 			return -EINVAL;
1545 		}
1546 	} else {
1547 		switch (flags & MAP_TYPE) {
1548 		case MAP_SHARED:
1549 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1550 				return -EINVAL;
1551 			/*
1552 			 * Ignore pgoff.
1553 			 */
1554 			pgoff = 0;
1555 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1556 			break;
1557 		case MAP_PRIVATE:
1558 			/*
1559 			 * Set pgoff according to addr for anon_vma.
1560 			 */
1561 			pgoff = addr >> PAGE_SHIFT;
1562 			break;
1563 		default:
1564 			return -EINVAL;
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Set 'VM_NORESERVE' if we should not account for the
1570 	 * memory use of this mapping.
1571 	 */
1572 	if (flags & MAP_NORESERVE) {
1573 		/* We honor MAP_NORESERVE if allowed to overcommit */
1574 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1575 			vm_flags |= VM_NORESERVE;
1576 
1577 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1578 		if (file && is_file_hugepages(file))
1579 			vm_flags |= VM_NORESERVE;
1580 	}
1581 
1582 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1583 	if (!IS_ERR_VALUE(addr) &&
1584 	    ((vm_flags & VM_LOCKED) ||
1585 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1586 		*populate = len;
1587 	return addr;
1588 }
1589 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1591 			      unsigned long prot, unsigned long flags,
1592 			      unsigned long fd, unsigned long pgoff)
1593 {
1594 	struct file *file = NULL;
1595 	unsigned long retval;
1596 
1597 	if (!(flags & MAP_ANONYMOUS)) {
1598 		audit_mmap_fd(fd, flags);
1599 		file = fget(fd);
1600 		if (!file)
1601 			return -EBADF;
1602 		if (is_file_hugepages(file)) {
1603 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1604 		} else if (unlikely(flags & MAP_HUGETLB)) {
1605 			retval = -EINVAL;
1606 			goto out_fput;
1607 		}
1608 	} else if (flags & MAP_HUGETLB) {
1609 		struct ucounts *ucounts = NULL;
1610 		struct hstate *hs;
1611 
1612 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1613 		if (!hs)
1614 			return -EINVAL;
1615 
1616 		len = ALIGN(len, huge_page_size(hs));
1617 		/*
1618 		 * VM_NORESERVE is used because the reservations will be
1619 		 * taken when vm_ops->mmap() is called
1620 		 * A dummy user value is used because we are not locking
1621 		 * memory so no accounting is necessary
1622 		 */
1623 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1624 				VM_NORESERVE,
1625 				&ucounts, HUGETLB_ANONHUGE_INODE,
1626 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1627 		if (IS_ERR(file))
1628 			return PTR_ERR(file);
1629 	}
1630 
1631 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1632 out_fput:
1633 	if (file)
1634 		fput(file);
1635 	return retval;
1636 }
1637 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1638 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1639 		unsigned long, prot, unsigned long, flags,
1640 		unsigned long, fd, unsigned long, pgoff)
1641 {
1642 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1643 }
1644 
1645 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1646 struct mmap_arg_struct {
1647 	unsigned long addr;
1648 	unsigned long len;
1649 	unsigned long prot;
1650 	unsigned long flags;
1651 	unsigned long fd;
1652 	unsigned long offset;
1653 };
1654 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1655 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1656 {
1657 	struct mmap_arg_struct a;
1658 
1659 	if (copy_from_user(&a, arg, sizeof(a)))
1660 		return -EFAULT;
1661 	if (offset_in_page(a.offset))
1662 		return -EINVAL;
1663 
1664 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1665 			       a.offset >> PAGE_SHIFT);
1666 }
1667 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1668 
1669 /*
1670  * Some shared mappings will want the pages marked read-only
1671  * to track write events. If so, we'll downgrade vm_page_prot
1672  * to the private version (using protection_map[] without the
1673  * VM_SHARED bit).
1674  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1675 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1676 {
1677 	vm_flags_t vm_flags = vma->vm_flags;
1678 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1679 
1680 	/* If it was private or non-writable, the write bit is already clear */
1681 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1682 		return 0;
1683 
1684 	/* The backer wishes to know when pages are first written to? */
1685 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1686 		return 1;
1687 
1688 	/* The open routine did something to the protections that pgprot_modify
1689 	 * won't preserve? */
1690 	if (pgprot_val(vm_page_prot) !=
1691 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1692 		return 0;
1693 
1694 	/* Do we need to track softdirty? */
1695 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1696 		return 1;
1697 
1698 	/* Specialty mapping? */
1699 	if (vm_flags & VM_PFNMAP)
1700 		return 0;
1701 
1702 	/* Can the mapping track the dirty pages? */
1703 	return vma->vm_file && vma->vm_file->f_mapping &&
1704 		mapping_can_writeback(vma->vm_file->f_mapping);
1705 }
1706 
1707 /*
1708  * We account for memory if it's a private writeable mapping,
1709  * not hugepages and VM_NORESERVE wasn't set.
1710  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1711 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1712 {
1713 	/*
1714 	 * hugetlb has its own accounting separate from the core VM
1715 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1716 	 */
1717 	if (file && is_file_hugepages(file))
1718 		return 0;
1719 
1720 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1721 }
1722 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1723 unsigned long mmap_region(struct file *file, unsigned long addr,
1724 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1725 		struct list_head *uf)
1726 {
1727 	struct mm_struct *mm = current->mm;
1728 	struct vm_area_struct *vma, *prev, *merge;
1729 	int error;
1730 	struct rb_node **rb_link, *rb_parent;
1731 	unsigned long charged = 0;
1732 
1733 	/* Check against address space limit. */
1734 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1735 		unsigned long nr_pages;
1736 
1737 		/*
1738 		 * MAP_FIXED may remove pages of mappings that intersects with
1739 		 * requested mapping. Account for the pages it would unmap.
1740 		 */
1741 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1742 
1743 		if (!may_expand_vm(mm, vm_flags,
1744 					(len >> PAGE_SHIFT) - nr_pages))
1745 			return -ENOMEM;
1746 	}
1747 
1748 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1749 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1750 		return -ENOMEM;
1751 	/*
1752 	 * Private writable mapping: check memory availability
1753 	 */
1754 	if (accountable_mapping(file, vm_flags)) {
1755 		charged = len >> PAGE_SHIFT;
1756 		if (security_vm_enough_memory_mm(mm, charged))
1757 			return -ENOMEM;
1758 		vm_flags |= VM_ACCOUNT;
1759 	}
1760 
1761 	/*
1762 	 * Can we just expand an old mapping?
1763 	 */
1764 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,   ///尝试合并vma
1765 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1766 	if (vma)
1767 		goto out;
1768 
1769 	/*
1770 	 * Determine the object being mapped and call the appropriate
1771 	 * specific mapper. the address has already been validated, but
1772 	 * not unmapped, but the maps are removed from the list.
1773 	 */
1774 	vma = vm_area_alloc(mm);   ///分配一个新vma
1775 	if (!vma) {
1776 		error = -ENOMEM;
1777 		goto unacct_error;
1778 	}
1779 
1780 	vma->vm_start = addr;
1781 	vma->vm_end = addr + len;
1782 	vma->vm_flags = vm_flags;
1783 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1784 	vma->vm_pgoff = pgoff;
1785 
1786 	///文件映射
1787 	if (file) {
1788 		if (vm_flags & VM_SHARED) {
1789 			error = mapping_map_writable(file->f_mapping);
1790 			if (error)
1791 				goto free_vma;
1792 		}
1793 
1794 		vma->vm_file = get_file(file);
1795 		///读文件数据函数与vma相关联,当缺页异常时,回调文件函数读内容到pagecache
1796 		///比如ext4_file_mmap->.fault=ext4_filemap_fault
1797 		error = call_mmap(file, vma);
1798 		if (error)
1799 			goto unmap_and_free_vma;
1800 
1801 		/* Can addr have changed??
1802 		 *
1803 		 * Answer: Yes, several device drivers can do it in their
1804 		 *         f_op->mmap method. -DaveM
1805 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1806 		 *      be updated for vma_link()
1807 		 */
1808 		WARN_ON_ONCE(addr != vma->vm_start);
1809 
1810 		addr = vma->vm_start;
1811 
1812 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1813 		 * as we may succeed this time.
1814 		 */
1815 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1816 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1817 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1818 			if (merge) {
1819 				/* ->mmap() can change vma->vm_file and fput the original file. So
1820 				 * fput the vma->vm_file here or we would add an extra fput for file
1821 				 * and cause general protection fault ultimately.
1822 				 */
1823 				fput(vma->vm_file);
1824 				vm_area_free(vma);
1825 				vma = merge;
1826 				/* Update vm_flags to pick up the change. */
1827 				vm_flags = vma->vm_flags;
1828 				goto unmap_writable;
1829 			}
1830 		}
1831 
1832 		vm_flags = vma->vm_flags;
1833 	} else if (vm_flags & VM_SHARED) {   ///共享映射
1834 		error = shmem_zero_setup(vma);   ///共享匿名映射,关联shmem的vma操作(ipc共享内存一样)
1835 		if (error)
1836 			goto free_vma;
1837 	} else {
1838 		vma_set_anonymous(vma);  ///私有匿名映射
1839 	}
1840 
1841 	/* Allow architectures to sanity-check the vm_flags */
1842 	if (!arch_validate_flags(vma->vm_flags)) {
1843 		error = -EINVAL;
1844 		if (file)
1845 			goto unmap_and_free_vma;
1846 		else
1847 			goto free_vma;
1848 	}
1849 
1850 	vma_link(mm, vma, prev, rb_link, rb_parent);   ///vma加入mm系统
1851 	/* Once vma denies write, undo our temporary denial count */
1852 unmap_writable:
1853 	if (file && vm_flags & VM_SHARED)
1854 		mapping_unmap_writable(file->f_mapping);
1855 	file = vma->vm_file;
1856 out:
1857 	perf_event_mmap(vma);
1858 
1859 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1860 	if (vm_flags & VM_LOCKED) {
1861 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1862 					is_vm_hugetlb_page(vma) ||
1863 					vma == get_gate_vma(current->mm))
1864 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1865 		else
1866 			mm->locked_vm += (len >> PAGE_SHIFT);
1867 	}
1868 
1869 	if (file)
1870 		uprobe_mmap(vma);
1871 
1872 	/*
1873 	 * New (or expanded) vma always get soft dirty status.
1874 	 * Otherwise user-space soft-dirty page tracker won't
1875 	 * be able to distinguish situation when vma area unmapped,
1876 	 * then new mapped in-place (which must be aimed as
1877 	 * a completely new data area).
1878 	 */
1879 	vma->vm_flags |= VM_SOFTDIRTY;
1880 
1881 	vma_set_page_prot(vma);
1882 
1883 	return addr;
1884 
1885 unmap_and_free_vma:
1886 	fput(vma->vm_file);
1887 	vma->vm_file = NULL;
1888 
1889 	/* Undo any partial mapping done by a device driver. */
1890 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1891 	charged = 0;
1892 	if (vm_flags & VM_SHARED)
1893 		mapping_unmap_writable(file->f_mapping);
1894 free_vma:
1895 	vm_area_free(vma);
1896 unacct_error:
1897 	if (charged)
1898 		vm_unacct_memory(charged);
1899 	return error;
1900 }
1901 
unmapped_area(struct vm_unmapped_area_info * info)1902 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1903 {
1904 	/*
1905 	 * We implement the search by looking for an rbtree node that
1906 	 * immediately follows a suitable gap. That is,
1907 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1908 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1909 	 * - gap_end - gap_start >= length
1910 	 */
1911 
1912 	struct mm_struct *mm = current->mm;
1913 	struct vm_area_struct *vma;
1914 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1915 
1916 	/* Adjust search length to account for worst case alignment overhead */
1917 	length = info->length + info->align_mask;
1918 	if (length < info->length)
1919 		return -ENOMEM;
1920 
1921 	/* Adjust search limits by the desired length */
1922 	if (info->high_limit < length)
1923 		return -ENOMEM;
1924 	high_limit = info->high_limit - length;
1925 
1926 	if (info->low_limit > high_limit)
1927 		return -ENOMEM;
1928 	low_limit = info->low_limit + length;
1929 
1930 	/* Check if rbtree root looks promising */
1931 	///第一次分配虚拟内存时,红黑树是空的,说明内存充足,直接跳转check_highest
1932 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1933 		goto check_highest;
1934 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1935 	///当前节点vma是否满足需求?
1936 	if (vma->rb_subtree_gap < length)
1937 		goto check_highest;
1938 
1939 	while (true) {
1940 		///先从左子树开始找
1941 		/* Visit left subtree if it looks promising */
1942 		gap_end = vm_start_gap(vma);
1943 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1944 			struct vm_area_struct *left =
1945 				rb_entry(vma->vm_rb.rb_left,
1946 					 struct vm_area_struct, vm_rb);
1947 			if (left->rb_subtree_gap >= length) {
1948 				vma = left;
1949 				continue;
1950 			}
1951 		}
1952 
1953 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1954 check_current:
1955 		/* Check if current node has a suitable gap */
1956 		if (gap_start > high_limit)
1957 			return -ENOMEM;
1958 		if (gap_end >= low_limit &&
1959 		    gap_end > gap_start && gap_end - gap_start >= length)
1960 			goto found;
1961 
1962 		///从右子树开始找
1963 		/* Visit right subtree if it looks promising */
1964 		if (vma->vm_rb.rb_right) {
1965 			struct vm_area_struct *right =
1966 				rb_entry(vma->vm_rb.rb_right,
1967 					 struct vm_area_struct, vm_rb);
1968 			if (right->rb_subtree_gap >= length) {
1969 				vma = right;
1970 				continue;
1971 			}
1972 		}
1973 
1974 		///往上一层根子树找
1975 		/* Go back up the rbtree to find next candidate node */
1976 		while (true) {
1977 			struct rb_node *prev = &vma->vm_rb;
1978 			if (!rb_parent(prev))
1979 				goto check_highest;
1980 			vma = rb_entry(rb_parent(prev),
1981 				       struct vm_area_struct, vm_rb);
1982 			if (prev == vma->vm_rb.rb_left) {
1983 				gap_start = vm_end_gap(vma->vm_prev);
1984 				gap_end = vm_start_gap(vma);
1985 				goto check_current;
1986 			}
1987 		}
1988 	}
1989 
1990 check_highest:
1991 	/* Check highest gap, which does not precede any rbtree node */
1992 	gap_start = mm->highest_vm_end;
1993 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1994 	///当前红黑树没找到,判断最后一个vma地址到最大地址,若仍然不满足,说明oom了,报错
1995 	if (gap_start > high_limit)
1996 		return -ENOMEM;
1997 
1998 found:
1999 	/* We found a suitable gap. Clip it with the original low_limit. */
2000 	if (gap_start < info->low_limit)
2001 		gap_start = info->low_limit;
2002 
2003 	/* Adjust gap address to the desired alignment */
2004 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2005 
2006 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2007 	VM_BUG_ON(gap_start + info->length > gap_end);
2008 	return gap_start;
2009 }
2010 
unmapped_area_topdown(struct vm_unmapped_area_info * info)2011 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2012 {
2013 	struct mm_struct *mm = current->mm;
2014 	struct vm_area_struct *vma;
2015 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2016 
2017 	/* Adjust search length to account for worst case alignment overhead */
2018 	length = info->length + info->align_mask;
2019 	if (length < info->length)
2020 		return -ENOMEM;
2021 
2022 	/*
2023 	 * Adjust search limits by the desired length.
2024 	 * See implementation comment at top of unmapped_area().
2025 	 */
2026 	 ///从高地址开始遍历
2027 	gap_end = info->high_limit;
2028 	if (gap_end < length)
2029 		return -ENOMEM;
2030 	high_limit = gap_end - length;
2031 
2032 	if (info->low_limit > high_limit)
2033 		return -ENOMEM;
2034 	low_limit = info->low_limit + length;
2035 
2036 	/* Check highest gap, which does not precede any rbtree node */
2037 	gap_start = mm->highest_vm_end;
2038 	if (gap_start <= high_limit)
2039 		goto found_highest;
2040 
2041 	/* Check if rbtree root looks promising */
2042 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2043 		return -ENOMEM;
2044 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2045 	if (vma->rb_subtree_gap < length)
2046 		return -ENOMEM;
2047 
2048 	while (true) {
2049 		/* Visit right subtree if it looks promising */
2050 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2051 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2052 			struct vm_area_struct *right =
2053 				rb_entry(vma->vm_rb.rb_right,
2054 					 struct vm_area_struct, vm_rb);
2055 			if (right->rb_subtree_gap >= length) {
2056 				vma = right;
2057 				continue;
2058 			}
2059 		}
2060 
2061 check_current:
2062 		/* Check if current node has a suitable gap */
2063 		gap_end = vm_start_gap(vma);
2064 		if (gap_end < low_limit)
2065 			return -ENOMEM;
2066 		if (gap_start <= high_limit &&
2067 		    gap_end > gap_start && gap_end - gap_start >= length)
2068 			goto found;
2069 
2070 		/* Visit left subtree if it looks promising */
2071 		if (vma->vm_rb.rb_left) {
2072 			struct vm_area_struct *left =
2073 				rb_entry(vma->vm_rb.rb_left,
2074 					 struct vm_area_struct, vm_rb);
2075 			if (left->rb_subtree_gap >= length) {
2076 				vma = left;
2077 				continue;
2078 			}
2079 		}
2080 
2081 		/* Go back up the rbtree to find next candidate node */
2082 		while (true) {
2083 			struct rb_node *prev = &vma->vm_rb;
2084 			if (!rb_parent(prev))
2085 				return -ENOMEM;
2086 			vma = rb_entry(rb_parent(prev),
2087 				       struct vm_area_struct, vm_rb);
2088 			if (prev == vma->vm_rb.rb_right) {
2089 				gap_start = vma->vm_prev ?
2090 					vm_end_gap(vma->vm_prev) : 0;
2091 				goto check_current;
2092 			}
2093 		}
2094 	}
2095 
2096 found:
2097 	/* We found a suitable gap. Clip it with the original high_limit. */
2098 	if (gap_end > info->high_limit)
2099 		gap_end = info->high_limit;
2100 
2101 found_highest:
2102 	/* Compute highest gap address at the desired alignment */
2103 	gap_end -= info->length;
2104 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2105 
2106 	VM_BUG_ON(gap_end < info->low_limit);
2107 	VM_BUG_ON(gap_end < gap_start);
2108 	return gap_end;
2109 }
2110 
2111 /*
2112  * Search for an unmapped address range.
2113  *
2114  * We are looking for a range that:
2115  * - does not intersect with any VMA;
2116  * - is contained within the [low_limit, high_limit) interval;
2117  * - is at least the desired size.
2118  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2119  */
vm_unmapped_area(struct vm_unmapped_area_info * info)2120 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2121 {
2122 	unsigned long addr;
2123 
2124 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2125 		addr = unmapped_area_topdown(info);
2126 	else
2127 		addr = unmapped_area(info);
2128 
2129 	trace_vm_unmapped_area(addr, info);
2130 	return addr;
2131 }
2132 
2133 #ifndef arch_get_mmap_end
2134 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2135 #endif
2136 
2137 #ifndef arch_get_mmap_base
2138 #define arch_get_mmap_base(addr, base) (base)
2139 #endif
2140 
2141 /* Get an address range which is currently unmapped.
2142  * For shmat() with addr=0.
2143  *
2144  * Ugly calling convention alert:
2145  * Return value with the low bits set means error value,
2146  * ie
2147  *	if (ret & ~PAGE_MASK)
2148  *		error = ret;
2149  *
2150  * This function "knows" that -ENOMEM has the bits set.
2151  */
2152 #ifndef HAVE_ARCH_UNMAPPED_AREA
2153 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2154 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2155 		unsigned long len, unsigned long pgoff, unsigned long flags)
2156 {
2157 	struct mm_struct *mm = current->mm;
2158 	struct vm_area_struct *vma, *prev;
2159 	struct vm_unmapped_area_info info;
2160 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2161 
2162 	if (len > mmap_end - mmap_min_addr)
2163 		return -ENOMEM;
2164 
2165 	if (flags & MAP_FIXED)
2166 		return addr;
2167 
2168 ///如果addr刚好空闲,且满足本次分配,返回首地址
2169 	if (addr) {
2170 		addr = PAGE_ALIGN(addr);
2171 		vma = find_vma_prev(mm, addr, &prev);
2172 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2173 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2174 		    (!prev || addr >= vm_end_gap(prev)))
2175 			return addr;
2176 	}
2177 
2178 ///不满足需求,初始化info,进一步扫描mmap映射区查找满足请求的内存
2179 	info.flags = 0;
2180 	info.length = len;
2181 	info.low_limit = mm->mmap_base;
2182 	info.high_limit = mmap_end;
2183 	info.align_mask = 0;
2184 	info.align_offset = 0;
2185 	return vm_unmapped_area(&info);
2186 }
2187 #endif
2188 
2189 /*
2190  * This mmap-allocator allocates new areas top-down from below the
2191  * stack's low limit (the base):
2192  */
2193 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2194 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2195 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2196 			  unsigned long len, unsigned long pgoff,
2197 			  unsigned long flags)
2198 {
2199 	struct vm_area_struct *vma, *prev;
2200 	struct mm_struct *mm = current->mm;
2201 	struct vm_unmapped_area_info info;
2202 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2203 
2204 	/* requested length too big for entire address space */
2205 	if (len > mmap_end - mmap_min_addr)
2206 		return -ENOMEM;
2207 
2208 	if (flags & MAP_FIXED)
2209 		return addr;
2210 
2211 	/* requesting a specific address */
2212 	if (addr) {
2213 		addr = PAGE_ALIGN(addr);
2214 		vma = find_vma_prev(mm, addr, &prev);
2215 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2216 				(!vma || addr + len <= vm_start_gap(vma)) &&
2217 				(!prev || addr >= vm_end_gap(prev)))
2218 			return addr;
2219 	}
2220 
2221 ///从高向低遍历
2222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2223 	info.length = len;
2224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2225 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2226 	info.align_mask = 0;
2227 	info.align_offset = 0;
2228 	addr = vm_unmapped_area(&info);
2229 
2230 	/*
2231 	 * A failed mmap() very likely causes application failure,
2232 	 * so fall back to the bottom-up function here. This scenario
2233 	 * can happen with large stack limits and large mmap()
2234 	 * allocations.
2235 	 */
2236 	 ///若从高低之开始分配失败,从低往高再分配一次
2237 	if (offset_in_page(addr)) {
2238 		VM_BUG_ON(addr != -ENOMEM);
2239 		info.flags = 0;
2240 		info.low_limit = TASK_UNMAPPED_BASE;
2241 		info.high_limit = mmap_end;
2242 		addr = vm_unmapped_area(&info);
2243 	}
2244 
2245 	return addr;
2246 }
2247 #endif
2248 
2249 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2250 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2251 		unsigned long pgoff, unsigned long flags)
2252 {
2253 	unsigned long (*get_area)(struct file *, unsigned long,
2254 				  unsigned long, unsigned long, unsigned long);
2255 
2256 	unsigned long error = arch_mmap_check(addr, len, flags);
2257 	if (error)
2258 		return error;
2259 
2260 	/* Careful about overflows.. */
2261 	if (len > TASK_SIZE)
2262 		return -ENOMEM;
2263 
2264 	get_area = current->mm->get_unmapped_area;
2265 	if (file) {
2266 		if (file->f_op->get_unmapped_area)
2267 			get_area = file->f_op->get_unmapped_area;
2268 	} else if (flags & MAP_SHARED) {
2269 		/*
2270 		 * mmap_region() will call shmem_zero_setup() to create a file,
2271 		 * so use shmem's get_unmapped_area in case it can be huge.
2272 		 * do_mmap() will clear pgoff, so match alignment.
2273 		 */
2274 		pgoff = 0;
2275 		get_area = shmem_get_unmapped_area;
2276 	}
2277 
2278 	addr = get_area(file, addr, len, pgoff, flags);
2279 	if (IS_ERR_VALUE(addr))
2280 		return addr;
2281 
2282 	if (addr > TASK_SIZE - len)
2283 		return -ENOMEM;
2284 	if (offset_in_page(addr))
2285 		return -EINVAL;
2286 
2287 	error = security_mmap_addr(addr);
2288 	return error ? error : addr;
2289 }
2290 
2291 EXPORT_SYMBOL(get_unmapped_area);
2292 
2293 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2294 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2295 {
2296 	struct rb_node *rb_node;
2297 	struct vm_area_struct *vma;
2298 
2299 	mmap_assert_locked(mm);
2300 	/* Check the cache first. */
2301 	vma = vmacache_find(mm, addr);    ///存放最近访问过的4个VMA
2302 	if (likely(vma))
2303 		return vma;
2304 
2305 	rb_node = mm->mm_rb.rb_node;
2306 
2307 	while (rb_node) {    ///遍历红黑树,查找满足要求的VMA
2308 		struct vm_area_struct *tmp;
2309 
2310 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2311 
2312 		if (tmp->vm_end > addr) {
2313 			vma = tmp;
2314 			if (tmp->vm_start <= addr)
2315 				break;
2316 			rb_node = rb_node->rb_left;
2317 		} else
2318 			rb_node = rb_node->rb_right;
2319 	}
2320 
2321 	if (vma)
2322 		vmacache_update(addr, vma);
2323 	return vma;
2324 }
2325 
2326 EXPORT_SYMBOL(find_vma);
2327 
2328 /*
2329  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2330  */
2331 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2332 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2333 			struct vm_area_struct **pprev)
2334 {
2335 	struct vm_area_struct *vma;
2336 
2337 	vma = find_vma(mm, addr);
2338 	if (vma) {
2339 		*pprev = vma->vm_prev;
2340 	} else {
2341 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2342 
2343 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2344 	}
2345 	return vma;
2346 }
2347 
2348 /*
2349  * Verify that the stack growth is acceptable and
2350  * update accounting. This is shared with both the
2351  * grow-up and grow-down cases.
2352  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2353 static int acct_stack_growth(struct vm_area_struct *vma,
2354 			     unsigned long size, unsigned long grow)
2355 {
2356 	struct mm_struct *mm = vma->vm_mm;
2357 	unsigned long new_start;
2358 
2359 	/* address space limit tests */
2360 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2361 		return -ENOMEM;
2362 
2363 	/* Stack limit test */
2364 	if (size > rlimit(RLIMIT_STACK))
2365 		return -ENOMEM;
2366 
2367 	/* mlock limit tests */
2368 	if (vma->vm_flags & VM_LOCKED) {
2369 		unsigned long locked;
2370 		unsigned long limit;
2371 		locked = mm->locked_vm + grow;
2372 		limit = rlimit(RLIMIT_MEMLOCK);
2373 		limit >>= PAGE_SHIFT;
2374 		if (locked > limit && !capable(CAP_IPC_LOCK))
2375 			return -ENOMEM;
2376 	}
2377 
2378 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2379 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2380 			vma->vm_end - size;
2381 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2382 		return -EFAULT;
2383 
2384 	/*
2385 	 * Overcommit..  This must be the final test, as it will
2386 	 * update security statistics.
2387 	 */
2388 	if (security_vm_enough_memory_mm(mm, grow))
2389 		return -ENOMEM;
2390 
2391 	return 0;
2392 }
2393 
2394 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2395 /*
2396  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2397  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2398  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2399 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2400 {
2401 	struct mm_struct *mm = vma->vm_mm;
2402 	struct vm_area_struct *next;
2403 	unsigned long gap_addr;
2404 	int error = 0;
2405 
2406 	if (!(vma->vm_flags & VM_GROWSUP))
2407 		return -EFAULT;
2408 
2409 	/* Guard against exceeding limits of the address space. */
2410 	address &= PAGE_MASK;
2411 	if (address >= (TASK_SIZE & PAGE_MASK))
2412 		return -ENOMEM;
2413 	address += PAGE_SIZE;
2414 
2415 	/* Enforce stack_guard_gap */
2416 	gap_addr = address + stack_guard_gap;
2417 
2418 	/* Guard against overflow */
2419 	if (gap_addr < address || gap_addr > TASK_SIZE)
2420 		gap_addr = TASK_SIZE;
2421 
2422 	next = vma->vm_next;
2423 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2424 		if (!(next->vm_flags & VM_GROWSUP))
2425 			return -ENOMEM;
2426 		/* Check that both stack segments have the same anon_vma? */
2427 	}
2428 
2429 	/* We must make sure the anon_vma is allocated. */
2430 	if (unlikely(anon_vma_prepare(vma)))
2431 		return -ENOMEM;
2432 
2433 	/*
2434 	 * vma->vm_start/vm_end cannot change under us because the caller
2435 	 * is required to hold the mmap_lock in read mode.  We need the
2436 	 * anon_vma lock to serialize against concurrent expand_stacks.
2437 	 */
2438 	anon_vma_lock_write(vma->anon_vma);
2439 
2440 	/* Somebody else might have raced and expanded it already */
2441 	if (address > vma->vm_end) {
2442 		unsigned long size, grow;
2443 
2444 		size = address - vma->vm_start;
2445 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2446 
2447 		error = -ENOMEM;
2448 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2449 			error = acct_stack_growth(vma, size, grow);
2450 			if (!error) {
2451 				/*
2452 				 * vma_gap_update() doesn't support concurrent
2453 				 * updates, but we only hold a shared mmap_lock
2454 				 * lock here, so we need to protect against
2455 				 * concurrent vma expansions.
2456 				 * anon_vma_lock_write() doesn't help here, as
2457 				 * we don't guarantee that all growable vmas
2458 				 * in a mm share the same root anon vma.
2459 				 * So, we reuse mm->page_table_lock to guard
2460 				 * against concurrent vma expansions.
2461 				 */
2462 				spin_lock(&mm->page_table_lock);
2463 				if (vma->vm_flags & VM_LOCKED)
2464 					mm->locked_vm += grow;
2465 				vm_stat_account(mm, vma->vm_flags, grow);
2466 				anon_vma_interval_tree_pre_update_vma(vma);
2467 				vma->vm_end = address;
2468 				anon_vma_interval_tree_post_update_vma(vma);
2469 				if (vma->vm_next)
2470 					vma_gap_update(vma->vm_next);
2471 				else
2472 					mm->highest_vm_end = vm_end_gap(vma);
2473 				spin_unlock(&mm->page_table_lock);
2474 
2475 				perf_event_mmap(vma);
2476 			}
2477 		}
2478 	}
2479 	anon_vma_unlock_write(vma->anon_vma);
2480 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2481 	validate_mm(mm);
2482 	return error;
2483 }
2484 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2485 
2486 /*
2487  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2488  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2489 int expand_downwards(struct vm_area_struct *vma,
2490 				   unsigned long address)
2491 {
2492 	struct mm_struct *mm = vma->vm_mm;
2493 	struct vm_area_struct *prev;
2494 	int error = 0;
2495 
2496 	address &= PAGE_MASK;
2497 	if (address < mmap_min_addr)
2498 		return -EPERM;
2499 
2500 	/* Enforce stack_guard_gap */
2501 	prev = vma->vm_prev;
2502 	/* Check that both stack segments have the same anon_vma? */
2503 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2504 			vma_is_accessible(prev)) {
2505 		if (address - prev->vm_end < stack_guard_gap)
2506 			return -ENOMEM;
2507 	}
2508 
2509 	/* We must make sure the anon_vma is allocated. */
2510 	if (unlikely(anon_vma_prepare(vma)))
2511 		return -ENOMEM;
2512 
2513 	/*
2514 	 * vma->vm_start/vm_end cannot change under us because the caller
2515 	 * is required to hold the mmap_lock in read mode.  We need the
2516 	 * anon_vma lock to serialize against concurrent expand_stacks.
2517 	 */
2518 	anon_vma_lock_write(vma->anon_vma);
2519 
2520 	/* Somebody else might have raced and expanded it already */
2521 	if (address < vma->vm_start) {
2522 		unsigned long size, grow;
2523 
2524 		size = vma->vm_end - address;
2525 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2526 
2527 		error = -ENOMEM;
2528 		if (grow <= vma->vm_pgoff) {
2529 			error = acct_stack_growth(vma, size, grow);
2530 			if (!error) {
2531 				/*
2532 				 * vma_gap_update() doesn't support concurrent
2533 				 * updates, but we only hold a shared mmap_lock
2534 				 * lock here, so we need to protect against
2535 				 * concurrent vma expansions.
2536 				 * anon_vma_lock_write() doesn't help here, as
2537 				 * we don't guarantee that all growable vmas
2538 				 * in a mm share the same root anon vma.
2539 				 * So, we reuse mm->page_table_lock to guard
2540 				 * against concurrent vma expansions.
2541 				 */
2542 				spin_lock(&mm->page_table_lock);
2543 				if (vma->vm_flags & VM_LOCKED)
2544 					mm->locked_vm += grow;
2545 				vm_stat_account(mm, vma->vm_flags, grow);
2546 				anon_vma_interval_tree_pre_update_vma(vma);
2547 				vma->vm_start = address;
2548 				vma->vm_pgoff -= grow;
2549 				anon_vma_interval_tree_post_update_vma(vma);
2550 				vma_gap_update(vma);
2551 				spin_unlock(&mm->page_table_lock);
2552 
2553 				perf_event_mmap(vma);
2554 			}
2555 		}
2556 	}
2557 	anon_vma_unlock_write(vma->anon_vma);
2558 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2559 	validate_mm(mm);
2560 	return error;
2561 }
2562 
2563 /* enforced gap between the expanding stack and other mappings. */
2564 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2565 
cmdline_parse_stack_guard_gap(char * p)2566 static int __init cmdline_parse_stack_guard_gap(char *p)
2567 {
2568 	unsigned long val;
2569 	char *endptr;
2570 
2571 	val = simple_strtoul(p, &endptr, 10);
2572 	if (!*endptr)
2573 		stack_guard_gap = val << PAGE_SHIFT;
2574 
2575 	return 0;
2576 }
2577 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2578 
2579 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2580 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 	return expand_upwards(vma, address);
2583 }
2584 
2585 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2586 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2587 {
2588 	struct vm_area_struct *vma, *prev;
2589 
2590 	addr &= PAGE_MASK;
2591 	vma = find_vma_prev(mm, addr, &prev);
2592 	if (vma && (vma->vm_start <= addr))
2593 		return vma;
2594 	/* don't alter vm_end if the coredump is running */
2595 	if (!prev || expand_stack(prev, addr))
2596 		return NULL;
2597 	if (prev->vm_flags & VM_LOCKED)
2598 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2599 	return prev;
2600 }
2601 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2602 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2603 {
2604 	return expand_downwards(vma, address);
2605 }
2606 
2607 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2608 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2609 {
2610 	struct vm_area_struct *vma;
2611 	unsigned long start;
2612 
2613 	addr &= PAGE_MASK;
2614 	vma = find_vma(mm, addr);
2615 	if (!vma)
2616 		return NULL;
2617 	if (vma->vm_start <= addr)
2618 		return vma;
2619 	if (!(vma->vm_flags & VM_GROWSDOWN))
2620 		return NULL;
2621 	start = vma->vm_start;
2622 	if (expand_stack(vma, addr))
2623 		return NULL;
2624 	if (vma->vm_flags & VM_LOCKED)
2625 		populate_vma_page_range(vma, addr, start, NULL);
2626 	return vma;
2627 }
2628 #endif
2629 
2630 EXPORT_SYMBOL_GPL(find_extend_vma);
2631 
2632 /*
2633  * Ok - we have the memory areas we should free on the vma list,
2634  * so release them, and do the vma updates.
2635  *
2636  * Called with the mm semaphore held.
2637  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2638 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2639 {
2640 	unsigned long nr_accounted = 0;
2641 
2642 	/* Update high watermark before we lower total_vm */
2643 	update_hiwater_vm(mm);
2644 	do {
2645 		long nrpages = vma_pages(vma);
2646 
2647 		if (vma->vm_flags & VM_ACCOUNT)
2648 			nr_accounted += nrpages;
2649 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2650 		vma = remove_vma(vma);
2651 	} while (vma);
2652 	vm_unacct_memory(nr_accounted);
2653 	validate_mm(mm);
2654 }
2655 
2656 /*
2657  * Get rid of page table information in the indicated region.
2658  *
2659  * Called with the mm semaphore held.
2660  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2661 static void unmap_region(struct mm_struct *mm,
2662 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2663 		unsigned long start, unsigned long end)
2664 {
2665 	struct vm_area_struct *next = vma_next(mm, prev);
2666 	struct mmu_gather tlb;
2667 
2668 	lru_add_drain();
2669 	tlb_gather_mmu(&tlb, mm);
2670 	update_hiwater_rss(mm);
2671 	unmap_vmas(&tlb, vma, start, end);
2672 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2673 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2674 	tlb_finish_mmu(&tlb);
2675 }
2676 
2677 /*
2678  * Create a list of vma's touched by the unmap, removing them from the mm's
2679  * vma list as we go..
2680  */
2681 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2682 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2683 	struct vm_area_struct *prev, unsigned long end)
2684 {
2685 	struct vm_area_struct **insertion_point;
2686 	struct vm_area_struct *tail_vma = NULL;
2687 
2688 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2689 	vma->vm_prev = NULL;
2690 	do {
2691 		vma_rb_erase(vma, &mm->mm_rb);
2692 		mm->map_count--;
2693 		tail_vma = vma;
2694 		vma = vma->vm_next;
2695 	} while (vma && vma->vm_start < end);
2696 	*insertion_point = vma;
2697 	if (vma) {
2698 		vma->vm_prev = prev;
2699 		vma_gap_update(vma);
2700 	} else
2701 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2702 	tail_vma->vm_next = NULL;
2703 
2704 	/* Kill the cache */
2705 	vmacache_invalidate(mm);
2706 
2707 	/*
2708 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2709 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2710 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2711 	 */
2712 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2713 		return false;
2714 	if (prev && (prev->vm_flags & VM_GROWSUP))
2715 		return false;
2716 	return true;
2717 }
2718 
2719 /*
2720  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2721  * has already been checked or doesn't make sense to fail.
2722  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2723 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2724 		unsigned long addr, int new_below)
2725 {
2726 	struct vm_area_struct *new;
2727 	int err;
2728 
2729 	if (vma->vm_ops && vma->vm_ops->may_split) {
2730 		err = vma->vm_ops->may_split(vma, addr);
2731 		if (err)
2732 			return err;
2733 	}
2734 
2735 	new = vm_area_dup(vma);
2736 	if (!new)
2737 		return -ENOMEM;
2738 
2739 	if (new_below)
2740 		new->vm_end = addr;
2741 	else {
2742 		new->vm_start = addr;
2743 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2744 	}
2745 
2746 	err = vma_dup_policy(vma, new);
2747 	if (err)
2748 		goto out_free_vma;
2749 
2750 	err = anon_vma_clone(new, vma);
2751 	if (err)
2752 		goto out_free_mpol;
2753 
2754 	if (new->vm_file)
2755 		get_file(new->vm_file);
2756 
2757 	if (new->vm_ops && new->vm_ops->open)
2758 		new->vm_ops->open(new);
2759 
2760 	if (new_below)
2761 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2762 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2763 	else
2764 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2765 
2766 	/* Success. */
2767 	if (!err)
2768 		return 0;
2769 
2770 	/* Clean everything up if vma_adjust failed. */
2771 	if (new->vm_ops && new->vm_ops->close)
2772 		new->vm_ops->close(new);
2773 	if (new->vm_file)
2774 		fput(new->vm_file);
2775 	unlink_anon_vmas(new);
2776  out_free_mpol:
2777 	mpol_put(vma_policy(new));
2778  out_free_vma:
2779 	vm_area_free(new);
2780 	return err;
2781 }
2782 
2783 /*
2784  * Split a vma into two pieces at address 'addr', a new vma is allocated
2785  * either for the first part or the tail.
2786  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2787 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2788 	      unsigned long addr, int new_below)
2789 {
2790 	if (mm->map_count >= sysctl_max_map_count)
2791 		return -ENOMEM;
2792 
2793 	return __split_vma(mm, vma, addr, new_below);
2794 }
2795 
2796 static inline void
unlock_range(struct vm_area_struct * start,unsigned long limit)2797 unlock_range(struct vm_area_struct *start, unsigned long limit)
2798 {
2799 	struct mm_struct *mm = start->vm_mm;
2800 	struct vm_area_struct *tmp = start;
2801 
2802 	while (tmp && tmp->vm_start < limit) {
2803 		if (tmp->vm_flags & VM_LOCKED) {
2804 			mm->locked_vm -= vma_pages(tmp);
2805 			munlock_vma_pages_all(tmp);
2806 		}
2807 
2808 		tmp = tmp->vm_next;
2809 	}
2810 }
2811 
2812 /* Munmap is split into 2 main parts -- this part which finds
2813  * what needs doing, and the areas themselves, which do the
2814  * work.  This now handles partial unmappings.
2815  * Jeremy Fitzhardinge <jeremy@goop.org>
2816  */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2817 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2818 		struct list_head *uf, bool downgrade)
2819 {
2820 	unsigned long end;
2821 	struct vm_area_struct *vma, *prev, *last;
2822 
2823 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2824 		return -EINVAL;
2825 
2826 	len = PAGE_ALIGN(len);
2827 	end = start + len;
2828 	if (len == 0)
2829 		return -EINVAL;
2830 
2831 	/*
2832 	 * arch_unmap() might do unmaps itself.  It must be called
2833 	 * and finish any rbtree manipulation before this code
2834 	 * runs and also starts to manipulate the rbtree.
2835 	 */
2836 	arch_unmap(mm, start, end);
2837 
2838 	/* Find the first overlapping VMA where start < vma->vm_end */
2839 	vma = find_vma_intersection(mm, start, end);
2840 	if (!vma)
2841 		return 0;
2842 	prev = vma->vm_prev;
2843 
2844 	/*
2845 	 * If we need to split any vma, do it now to save pain later.
2846 	 *
2847 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2848 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2849 	 * places tmp vma above, and higher split_vma places tmp vma below.
2850 	 */
2851 	if (start > vma->vm_start) {
2852 		int error;
2853 
2854 		/*
2855 		 * Make sure that map_count on return from munmap() will
2856 		 * not exceed its limit; but let map_count go just above
2857 		 * its limit temporarily, to help free resources as expected.
2858 		 */
2859 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2860 			return -ENOMEM;
2861 
2862 		error = __split_vma(mm, vma, start, 0);
2863 		if (error)
2864 			return error;
2865 		prev = vma;
2866 	}
2867 
2868 	/* Does it split the last one? */
2869 	last = find_vma(mm, end);
2870 	if (last && end > last->vm_start) {
2871 		int error = __split_vma(mm, last, end, 1);
2872 		if (error)
2873 			return error;
2874 	}
2875 	vma = vma_next(mm, prev);
2876 
2877 	if (unlikely(uf)) {
2878 		/*
2879 		 * If userfaultfd_unmap_prep returns an error the vmas
2880 		 * will remain split, but userland will get a
2881 		 * highly unexpected error anyway. This is no
2882 		 * different than the case where the first of the two
2883 		 * __split_vma fails, but we don't undo the first
2884 		 * split, despite we could. This is unlikely enough
2885 		 * failure that it's not worth optimizing it for.
2886 		 */
2887 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2888 		if (error)
2889 			return error;
2890 	}
2891 
2892 	/*
2893 	 * unlock any mlock()ed ranges before detaching vmas
2894 	 */
2895 	if (mm->locked_vm)
2896 		unlock_range(vma, end);
2897 
2898 	/* Detach vmas from rbtree */
2899 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2900 		downgrade = false;
2901 
2902 	if (downgrade)
2903 		mmap_write_downgrade(mm);
2904 
2905 	unmap_region(mm, vma, prev, start, end);
2906 
2907 	/* Fix up all other VM information */
2908 	remove_vma_list(mm, vma);
2909 
2910 	return downgrade ? 1 : 0;
2911 }
2912 
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2913 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2914 	      struct list_head *uf)
2915 {
2916 	return __do_munmap(mm, start, len, uf, false);
2917 }
2918 
__vm_munmap(unsigned long start,size_t len,bool downgrade)2919 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2920 {
2921 	int ret;
2922 	struct mm_struct *mm = current->mm;
2923 	LIST_HEAD(uf);
2924 
2925 	if (mmap_write_lock_killable(mm))
2926 		return -EINTR;
2927 
2928 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2929 	/*
2930 	 * Returning 1 indicates mmap_lock is downgraded.
2931 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2932 	 * it to 0 before return.
2933 	 */
2934 	if (ret == 1) {
2935 		mmap_read_unlock(mm);
2936 		ret = 0;
2937 	} else
2938 		mmap_write_unlock(mm);
2939 
2940 	userfaultfd_unmap_complete(mm, &uf);
2941 	return ret;
2942 }
2943 
vm_munmap(unsigned long start,size_t len)2944 int vm_munmap(unsigned long start, size_t len)
2945 {
2946 	return __vm_munmap(start, len, false);
2947 }
2948 EXPORT_SYMBOL(vm_munmap);
2949 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2951 {
2952 	addr = untagged_addr(addr);
2953 	profile_munmap(addr);
2954 	return __vm_munmap(addr, len, true);
2955 }
2956 
2957 
2958 /*
2959  * Emulation of deprecated remap_file_pages() syscall.
2960  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2961 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2962 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2963 {
2964 
2965 	struct mm_struct *mm = current->mm;
2966 	struct vm_area_struct *vma;
2967 	unsigned long populate = 0;
2968 	unsigned long ret = -EINVAL;
2969 	struct file *file;
2970 
2971 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2972 		     current->comm, current->pid);
2973 
2974 	if (prot)
2975 		return ret;
2976 	start = start & PAGE_MASK;
2977 	size = size & PAGE_MASK;
2978 
2979 	if (start + size <= start)
2980 		return ret;
2981 
2982 	/* Does pgoff wrap? */
2983 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2984 		return ret;
2985 
2986 	if (mmap_write_lock_killable(mm))
2987 		return -EINTR;
2988 
2989 	vma = vma_lookup(mm, start);
2990 
2991 	if (!vma || !(vma->vm_flags & VM_SHARED))
2992 		goto out;
2993 
2994 	if (start + size > vma->vm_end) {
2995 		struct vm_area_struct *next;
2996 
2997 		for (next = vma->vm_next; next; next = next->vm_next) {
2998 			/* hole between vmas ? */
2999 			if (next->vm_start != next->vm_prev->vm_end)
3000 				goto out;
3001 
3002 			if (next->vm_file != vma->vm_file)
3003 				goto out;
3004 
3005 			if (next->vm_flags != vma->vm_flags)
3006 				goto out;
3007 
3008 			if (start + size <= next->vm_end)
3009 				break;
3010 		}
3011 
3012 		if (!next)
3013 			goto out;
3014 	}
3015 
3016 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3017 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3018 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3019 
3020 	flags &= MAP_NONBLOCK;
3021 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3022 	if (vma->vm_flags & VM_LOCKED)
3023 		flags |= MAP_LOCKED;
3024 
3025 	file = get_file(vma->vm_file);
3026 	ret = do_mmap(vma->vm_file, start, size,
3027 			prot, flags, pgoff, &populate, NULL);
3028 	fput(file);
3029 out:
3030 	mmap_write_unlock(mm);
3031 	if (populate)
3032 		mm_populate(ret, populate);
3033 	if (!IS_ERR_VALUE(ret))
3034 		ret = 0;
3035 	return ret;
3036 }
3037 
3038 /*
3039  *  this is really a simplified "do_mmap".  it only handles
3040  *  anonymous maps.  eventually we may be able to do some
3041  *  brk-specific accounting here.
3042  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3043 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3044 {
3045 	struct mm_struct *mm = current->mm;
3046 	struct vm_area_struct *vma, *prev;
3047 	struct rb_node **rb_link, *rb_parent;
3048 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3049 	int error;
3050 	unsigned long mapped_addr;
3051 
3052 	/* Until we need other flags, refuse anything except VM_EXEC. */
3053 	if ((flags & (~VM_EXEC)) != 0)
3054 		return -EINVAL;
3055 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;  ///默认属性,可读写
3056 
3057 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); ///返回未使用过的,未映射的线性地址区间的,起始地址
3058 	if (IS_ERR_VALUE(mapped_addr))
3059 		return mapped_addr;
3060 
3061 	error = mlock_future_check(mm, mm->def_flags, len);
3062 	if (error)
3063 		return error;
3064 
3065 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3066 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) ///寻找适合插入的红黑树节点
3067 		return -ENOMEM;
3068 
3069 	/* Check against address space limits *after* clearing old maps... */
3070 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3071 		return -ENOMEM;
3072 
3073 	if (mm->map_count > sysctl_max_map_count)
3074 		return -ENOMEM;
3075 
3076 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3077 		return -ENOMEM;
3078 
3079 	/* Can we just expand an old private anonymous mapping? */  ///检查是否能合并addr到附近的vma,若不能,只能新建一个vma
3080 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3081 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3082 	if (vma)
3083 		goto out;
3084 
3085 	/*
3086 	 * create a vma struct for an anonymous mapping
3087 	 */
3088 	vma = vm_area_alloc(mm);
3089 	if (!vma) {
3090 		vm_unacct_memory(len >> PAGE_SHIFT);
3091 		return -ENOMEM;
3092 	}
3093 
3094 	vma_set_anonymous(vma);
3095 	vma->vm_start = addr;
3096 	vma->vm_end = addr + len;
3097 	vma->vm_pgoff = pgoff;
3098 	vma->vm_flags = flags;
3099 	vma->vm_page_prot = vm_get_page_prot(flags);
3100 	vma_link(mm, vma, prev, rb_link, rb_parent);  ///新vma添加到mmap链表和红黑树
3101 out:
3102 	perf_event_mmap(vma);
3103 	mm->total_vm += len >> PAGE_SHIFT;
3104 	mm->data_vm += len >> PAGE_SHIFT;
3105 	if (flags & VM_LOCKED)
3106 		mm->locked_vm += (len >> PAGE_SHIFT);
3107 	vma->vm_flags |= VM_SOFTDIRTY;
3108 	return 0;
3109 }
3110 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3111 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3112 {
3113 	struct mm_struct *mm = current->mm;
3114 	unsigned long len;
3115 	int ret;
3116 	bool populate;
3117 	LIST_HEAD(uf);
3118 
3119 	len = PAGE_ALIGN(request);
3120 	if (len < request)
3121 		return -ENOMEM;
3122 	if (!len)
3123 		return 0;
3124 
3125 	if (mmap_write_lock_killable(mm))
3126 		return -EINTR;
3127 
3128 	ret = do_brk_flags(addr, len, flags, &uf);
3129 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3130 	mmap_write_unlock(mm);
3131 	userfaultfd_unmap_complete(mm, &uf);
3132 	if (populate && !ret)
3133 		mm_populate(addr, len);
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL(vm_brk_flags);
3137 
vm_brk(unsigned long addr,unsigned long len)3138 int vm_brk(unsigned long addr, unsigned long len)
3139 {
3140 	return vm_brk_flags(addr, len, 0);
3141 }
3142 EXPORT_SYMBOL(vm_brk);
3143 
3144 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3145 void exit_mmap(struct mm_struct *mm)
3146 {
3147 	struct mmu_gather tlb;
3148 	struct vm_area_struct *vma;
3149 	unsigned long nr_accounted = 0;
3150 
3151 	/* mm's last user has gone, and its about to be pulled down */
3152 	mmu_notifier_release(mm);
3153 
3154 	if (unlikely(mm_is_oom_victim(mm))) {
3155 		/*
3156 		 * Manually reap the mm to free as much memory as possible.
3157 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3158 		 * this mm from further consideration.  Taking mm->mmap_lock for
3159 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3160 		 * reaper will not run on this mm again after mmap_lock is
3161 		 * dropped.
3162 		 *
3163 		 * Nothing can be holding mm->mmap_lock here and the above call
3164 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3165 		 * __oom_reap_task_mm() will not block.
3166 		 *
3167 		 * This needs to be done before calling munlock_vma_pages_all(),
3168 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3169 		 * reliably test it.
3170 		 */
3171 		(void)__oom_reap_task_mm(mm);
3172 
3173 		set_bit(MMF_OOM_SKIP, &mm->flags);
3174 		mmap_write_lock(mm);
3175 		mmap_write_unlock(mm);
3176 	}
3177 
3178 	if (mm->locked_vm)
3179 		unlock_range(mm->mmap, ULONG_MAX);
3180 
3181 	arch_exit_mmap(mm);
3182 
3183 	vma = mm->mmap;
3184 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3185 		return;
3186 
3187 	lru_add_drain();
3188 	flush_cache_mm(mm);
3189 	tlb_gather_mmu_fullmm(&tlb, mm);
3190 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3191 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3192 	unmap_vmas(&tlb, vma, 0, -1);
3193 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3194 	tlb_finish_mmu(&tlb);
3195 
3196 	/*
3197 	 * Walk the list again, actually closing and freeing it,
3198 	 * with preemption enabled, without holding any MM locks.
3199 	 */
3200 	while (vma) {
3201 		if (vma->vm_flags & VM_ACCOUNT)
3202 			nr_accounted += vma_pages(vma);
3203 		vma = remove_vma(vma);
3204 		cond_resched();
3205 	}
3206 	vm_unacct_memory(nr_accounted);
3207 }
3208 
3209 /* Insert vm structure into process list sorted by address
3210  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3211  * then i_mmap_rwsem is taken here.
3212  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3213 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3214 {
3215 	struct vm_area_struct *prev;
3216 	struct rb_node **rb_link, *rb_parent;
3217 
3218 ///查找要插入的位置
3219 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3220 			   &prev, &rb_link, &rb_parent))
3221 		return -ENOMEM;
3222 	if ((vma->vm_flags & VM_ACCOUNT) &&
3223 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3224 		return -ENOMEM;
3225 
3226 	/*
3227 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3228 	 * until its first write fault, when page's anon_vma and index
3229 	 * are set.  But now set the vm_pgoff it will almost certainly
3230 	 * end up with (unless mremap moves it elsewhere before that
3231 	 * first wfault), so /proc/pid/maps tells a consistent story.
3232 	 *
3233 	 * By setting it to reflect the virtual start address of the
3234 	 * vma, merges and splits can happen in a seamless way, just
3235 	 * using the existing file pgoff checks and manipulations.
3236 	 * Similarly in do_mmap and in do_brk_flags.
3237 	 */
3238 	if (vma_is_anonymous(vma)) {   ///判断是否为匿名页
3239 		BUG_ON(vma->anon_vma);
3240 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3241 	}
3242 
3243 	vma_link(mm, vma, prev, rb_link, rb_parent);   //将vma插入mm的vma链表中
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Copy the vma structure to a new location in the same mm,
3249  * prior to moving page table entries, to effect an mremap move.
3250  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3251 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3252 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3253 	bool *need_rmap_locks)
3254 {
3255 	struct vm_area_struct *vma = *vmap;
3256 	unsigned long vma_start = vma->vm_start;
3257 	struct mm_struct *mm = vma->vm_mm;
3258 	struct vm_area_struct *new_vma, *prev;
3259 	struct rb_node **rb_link, *rb_parent;
3260 	bool faulted_in_anon_vma = true;
3261 
3262 	/*
3263 	 * If anonymous vma has not yet been faulted, update new pgoff
3264 	 * to match new location, to increase its chance of merging.
3265 	 */
3266 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3267 		pgoff = addr >> PAGE_SHIFT;
3268 		faulted_in_anon_vma = false;
3269 	}
3270 
3271 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3272 		return NULL;	/* should never get here */
3273 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3274 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3275 			    vma->vm_userfaultfd_ctx);
3276 	if (new_vma) {
3277 		/*
3278 		 * Source vma may have been merged into new_vma
3279 		 */
3280 		if (unlikely(vma_start >= new_vma->vm_start &&
3281 			     vma_start < new_vma->vm_end)) {
3282 			/*
3283 			 * The only way we can get a vma_merge with
3284 			 * self during an mremap is if the vma hasn't
3285 			 * been faulted in yet and we were allowed to
3286 			 * reset the dst vma->vm_pgoff to the
3287 			 * destination address of the mremap to allow
3288 			 * the merge to happen. mremap must change the
3289 			 * vm_pgoff linearity between src and dst vmas
3290 			 * (in turn preventing a vma_merge) to be
3291 			 * safe. It is only safe to keep the vm_pgoff
3292 			 * linear if there are no pages mapped yet.
3293 			 */
3294 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3295 			*vmap = vma = new_vma;
3296 		}
3297 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3298 	} else {
3299 		new_vma = vm_area_dup(vma);
3300 		if (!new_vma)
3301 			goto out;
3302 		new_vma->vm_start = addr;
3303 		new_vma->vm_end = addr + len;
3304 		new_vma->vm_pgoff = pgoff;
3305 		if (vma_dup_policy(vma, new_vma))
3306 			goto out_free_vma;
3307 		if (anon_vma_clone(new_vma, vma))
3308 			goto out_free_mempol;
3309 		if (new_vma->vm_file)
3310 			get_file(new_vma->vm_file);
3311 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3312 			new_vma->vm_ops->open(new_vma);
3313 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3314 		*need_rmap_locks = false;
3315 	}
3316 	return new_vma;
3317 
3318 out_free_mempol:
3319 	mpol_put(vma_policy(new_vma));
3320 out_free_vma:
3321 	vm_area_free(new_vma);
3322 out:
3323 	return NULL;
3324 }
3325 
3326 /*
3327  * Return true if the calling process may expand its vm space by the passed
3328  * number of pages
3329  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3330 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3331 {
3332 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3333 		return false;
3334 
3335 	if (is_data_mapping(flags) &&
3336 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3337 		/* Workaround for Valgrind */
3338 		if (rlimit(RLIMIT_DATA) == 0 &&
3339 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3340 			return true;
3341 
3342 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3343 			     current->comm, current->pid,
3344 			     (mm->data_vm + npages) << PAGE_SHIFT,
3345 			     rlimit(RLIMIT_DATA),
3346 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3347 
3348 		if (!ignore_rlimit_data)
3349 			return false;
3350 	}
3351 
3352 	return true;
3353 }
3354 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3355 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3356 {
3357 	mm->total_vm += npages;
3358 
3359 	if (is_exec_mapping(flags))
3360 		mm->exec_vm += npages;
3361 	else if (is_stack_mapping(flags))
3362 		mm->stack_vm += npages;
3363 	else if (is_data_mapping(flags))
3364 		mm->data_vm += npages;
3365 }
3366 
3367 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3368 
3369 /*
3370  * Having a close hook prevents vma merging regardless of flags.
3371  */
special_mapping_close(struct vm_area_struct * vma)3372 static void special_mapping_close(struct vm_area_struct *vma)
3373 {
3374 }
3375 
special_mapping_name(struct vm_area_struct * vma)3376 static const char *special_mapping_name(struct vm_area_struct *vma)
3377 {
3378 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3379 }
3380 
special_mapping_mremap(struct vm_area_struct * new_vma)3381 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3382 {
3383 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3384 
3385 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3386 		return -EFAULT;
3387 
3388 	if (sm->mremap)
3389 		return sm->mremap(sm, new_vma);
3390 
3391 	return 0;
3392 }
3393 
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3394 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3395 {
3396 	/*
3397 	 * Forbid splitting special mappings - kernel has expectations over
3398 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3399 	 * the size of vma should stay the same over the special mapping's
3400 	 * lifetime.
3401 	 */
3402 	return -EINVAL;
3403 }
3404 
3405 static const struct vm_operations_struct special_mapping_vmops = {
3406 	.close = special_mapping_close,
3407 	.fault = special_mapping_fault,
3408 	.mremap = special_mapping_mremap,
3409 	.name = special_mapping_name,
3410 	/* vDSO code relies that VVAR can't be accessed remotely */
3411 	.access = NULL,
3412 	.may_split = special_mapping_split,
3413 };
3414 
3415 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3416 	.close = special_mapping_close,
3417 	.fault = special_mapping_fault,
3418 };
3419 
special_mapping_fault(struct vm_fault * vmf)3420 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3421 {
3422 	struct vm_area_struct *vma = vmf->vma;
3423 	pgoff_t pgoff;
3424 	struct page **pages;
3425 
3426 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3427 		pages = vma->vm_private_data;
3428 	} else {
3429 		struct vm_special_mapping *sm = vma->vm_private_data;
3430 
3431 		if (sm->fault)
3432 			return sm->fault(sm, vmf->vma, vmf);
3433 
3434 		pages = sm->pages;
3435 	}
3436 
3437 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3438 		pgoff--;
3439 
3440 	if (*pages) {
3441 		struct page *page = *pages;
3442 		get_page(page);
3443 		vmf->page = page;
3444 		return 0;
3445 	}
3446 
3447 	return VM_FAULT_SIGBUS;
3448 }
3449 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3450 static struct vm_area_struct *__install_special_mapping(
3451 	struct mm_struct *mm,
3452 	unsigned long addr, unsigned long len,
3453 	unsigned long vm_flags, void *priv,
3454 	const struct vm_operations_struct *ops)
3455 {
3456 	int ret;
3457 	struct vm_area_struct *vma;
3458 
3459 	vma = vm_area_alloc(mm);
3460 	if (unlikely(vma == NULL))
3461 		return ERR_PTR(-ENOMEM);
3462 
3463 	vma->vm_start = addr;
3464 	vma->vm_end = addr + len;
3465 
3466 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3467 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3468 
3469 	vma->vm_ops = ops;
3470 	vma->vm_private_data = priv;
3471 
3472 	ret = insert_vm_struct(mm, vma);
3473 	if (ret)
3474 		goto out;
3475 
3476 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3477 
3478 	perf_event_mmap(vma);
3479 
3480 	return vma;
3481 
3482 out:
3483 	vm_area_free(vma);
3484 	return ERR_PTR(ret);
3485 }
3486 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3487 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3488 	const struct vm_special_mapping *sm)
3489 {
3490 	return vma->vm_private_data == sm &&
3491 		(vma->vm_ops == &special_mapping_vmops ||
3492 		 vma->vm_ops == &legacy_special_mapping_vmops);
3493 }
3494 
3495 /*
3496  * Called with mm->mmap_lock held for writing.
3497  * Insert a new vma covering the given region, with the given flags.
3498  * Its pages are supplied by the given array of struct page *.
3499  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3500  * The region past the last page supplied will always produce SIGBUS.
3501  * The array pointer and the pages it points to are assumed to stay alive
3502  * for as long as this mapping might exist.
3503  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3504 struct vm_area_struct *_install_special_mapping(
3505 	struct mm_struct *mm,
3506 	unsigned long addr, unsigned long len,
3507 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3508 {
3509 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3510 					&special_mapping_vmops);
3511 }
3512 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3513 int install_special_mapping(struct mm_struct *mm,
3514 			    unsigned long addr, unsigned long len,
3515 			    unsigned long vm_flags, struct page **pages)
3516 {
3517 	struct vm_area_struct *vma = __install_special_mapping(
3518 		mm, addr, len, vm_flags, (void *)pages,
3519 		&legacy_special_mapping_vmops);
3520 
3521 	return PTR_ERR_OR_ZERO(vma);
3522 }
3523 
3524 static DEFINE_MUTEX(mm_all_locks_mutex);
3525 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3526 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3527 {
3528 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3529 		/*
3530 		 * The LSB of head.next can't change from under us
3531 		 * because we hold the mm_all_locks_mutex.
3532 		 */
3533 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3534 		/*
3535 		 * We can safely modify head.next after taking the
3536 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3537 		 * the same anon_vma we won't take it again.
3538 		 *
3539 		 * No need of atomic instructions here, head.next
3540 		 * can't change from under us thanks to the
3541 		 * anon_vma->root->rwsem.
3542 		 */
3543 		if (__test_and_set_bit(0, (unsigned long *)
3544 				       &anon_vma->root->rb_root.rb_root.rb_node))
3545 			BUG();
3546 	}
3547 }
3548 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3549 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3550 {
3551 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3552 		/*
3553 		 * AS_MM_ALL_LOCKS can't change from under us because
3554 		 * we hold the mm_all_locks_mutex.
3555 		 *
3556 		 * Operations on ->flags have to be atomic because
3557 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3558 		 * mm_all_locks_mutex, there may be other cpus
3559 		 * changing other bitflags in parallel to us.
3560 		 */
3561 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3562 			BUG();
3563 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3564 	}
3565 }
3566 
3567 /*
3568  * This operation locks against the VM for all pte/vma/mm related
3569  * operations that could ever happen on a certain mm. This includes
3570  * vmtruncate, try_to_unmap, and all page faults.
3571  *
3572  * The caller must take the mmap_lock in write mode before calling
3573  * mm_take_all_locks(). The caller isn't allowed to release the
3574  * mmap_lock until mm_drop_all_locks() returns.
3575  *
3576  * mmap_lock in write mode is required in order to block all operations
3577  * that could modify pagetables and free pages without need of
3578  * altering the vma layout. It's also needed in write mode to avoid new
3579  * anon_vmas to be associated with existing vmas.
3580  *
3581  * A single task can't take more than one mm_take_all_locks() in a row
3582  * or it would deadlock.
3583  *
3584  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3585  * mapping->flags avoid to take the same lock twice, if more than one
3586  * vma in this mm is backed by the same anon_vma or address_space.
3587  *
3588  * We take locks in following order, accordingly to comment at beginning
3589  * of mm/rmap.c:
3590  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3591  *     hugetlb mapping);
3592  *   - all i_mmap_rwsem locks;
3593  *   - all anon_vma->rwseml
3594  *
3595  * We can take all locks within these types randomly because the VM code
3596  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3597  * mm_all_locks_mutex.
3598  *
3599  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3600  * that may have to take thousand of locks.
3601  *
3602  * mm_take_all_locks() can fail if it's interrupted by signals.
3603  */
mm_take_all_locks(struct mm_struct * mm)3604 int mm_take_all_locks(struct mm_struct *mm)
3605 {
3606 	struct vm_area_struct *vma;
3607 	struct anon_vma_chain *avc;
3608 
3609 	BUG_ON(mmap_read_trylock(mm));
3610 
3611 	mutex_lock(&mm_all_locks_mutex);
3612 
3613 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3614 		if (signal_pending(current))
3615 			goto out_unlock;
3616 		if (vma->vm_file && vma->vm_file->f_mapping &&
3617 				is_vm_hugetlb_page(vma))
3618 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3619 	}
3620 
3621 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3622 		if (signal_pending(current))
3623 			goto out_unlock;
3624 		if (vma->vm_file && vma->vm_file->f_mapping &&
3625 				!is_vm_hugetlb_page(vma))
3626 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3627 	}
3628 
3629 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3630 		if (signal_pending(current))
3631 			goto out_unlock;
3632 		if (vma->anon_vma)
3633 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3634 				vm_lock_anon_vma(mm, avc->anon_vma);
3635 	}
3636 
3637 	return 0;
3638 
3639 out_unlock:
3640 	mm_drop_all_locks(mm);
3641 	return -EINTR;
3642 }
3643 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3644 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3645 {
3646 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3647 		/*
3648 		 * The LSB of head.next can't change to 0 from under
3649 		 * us because we hold the mm_all_locks_mutex.
3650 		 *
3651 		 * We must however clear the bitflag before unlocking
3652 		 * the vma so the users using the anon_vma->rb_root will
3653 		 * never see our bitflag.
3654 		 *
3655 		 * No need of atomic instructions here, head.next
3656 		 * can't change from under us until we release the
3657 		 * anon_vma->root->rwsem.
3658 		 */
3659 		if (!__test_and_clear_bit(0, (unsigned long *)
3660 					  &anon_vma->root->rb_root.rb_root.rb_node))
3661 			BUG();
3662 		anon_vma_unlock_write(anon_vma);
3663 	}
3664 }
3665 
vm_unlock_mapping(struct address_space * mapping)3666 static void vm_unlock_mapping(struct address_space *mapping)
3667 {
3668 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3669 		/*
3670 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3671 		 * because we hold the mm_all_locks_mutex.
3672 		 */
3673 		i_mmap_unlock_write(mapping);
3674 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3675 					&mapping->flags))
3676 			BUG();
3677 	}
3678 }
3679 
3680 /*
3681  * The mmap_lock cannot be released by the caller until
3682  * mm_drop_all_locks() returns.
3683  */
mm_drop_all_locks(struct mm_struct * mm)3684 void mm_drop_all_locks(struct mm_struct *mm)
3685 {
3686 	struct vm_area_struct *vma;
3687 	struct anon_vma_chain *avc;
3688 
3689 	BUG_ON(mmap_read_trylock(mm));
3690 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3691 
3692 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3693 		if (vma->anon_vma)
3694 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3695 				vm_unlock_anon_vma(avc->anon_vma);
3696 		if (vma->vm_file && vma->vm_file->f_mapping)
3697 			vm_unlock_mapping(vma->vm_file->f_mapping);
3698 	}
3699 
3700 	mutex_unlock(&mm_all_locks_mutex);
3701 }
3702 
3703 /*
3704  * initialise the percpu counter for VM
3705  */
mmap_init(void)3706 void __init mmap_init(void)
3707 {
3708 	int ret;
3709 
3710 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3711 	VM_BUG_ON(ret);
3712 }
3713 
3714 /*
3715  * Initialise sysctl_user_reserve_kbytes.
3716  *
3717  * This is intended to prevent a user from starting a single memory hogging
3718  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3719  * mode.
3720  *
3721  * The default value is min(3% of free memory, 128MB)
3722  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3723  */
init_user_reserve(void)3724 static int init_user_reserve(void)
3725 {
3726 	unsigned long free_kbytes;
3727 
3728 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3729 
3730 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3731 	return 0;
3732 }
3733 subsys_initcall(init_user_reserve);
3734 
3735 /*
3736  * Initialise sysctl_admin_reserve_kbytes.
3737  *
3738  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3739  * to log in and kill a memory hogging process.
3740  *
3741  * Systems with more than 256MB will reserve 8MB, enough to recover
3742  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3743  * only reserve 3% of free pages by default.
3744  */
init_admin_reserve(void)3745 static int init_admin_reserve(void)
3746 {
3747 	unsigned long free_kbytes;
3748 
3749 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3750 
3751 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3752 	return 0;
3753 }
3754 subsys_initcall(init_admin_reserve);
3755 
3756 /*
3757  * Reinititalise user and admin reserves if memory is added or removed.
3758  *
3759  * The default user reserve max is 128MB, and the default max for the
3760  * admin reserve is 8MB. These are usually, but not always, enough to
3761  * enable recovery from a memory hogging process using login/sshd, a shell,
3762  * and tools like top. It may make sense to increase or even disable the
3763  * reserve depending on the existence of swap or variations in the recovery
3764  * tools. So, the admin may have changed them.
3765  *
3766  * If memory is added and the reserves have been eliminated or increased above
3767  * the default max, then we'll trust the admin.
3768  *
3769  * If memory is removed and there isn't enough free memory, then we
3770  * need to reset the reserves.
3771  *
3772  * Otherwise keep the reserve set by the admin.
3773  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3774 static int reserve_mem_notifier(struct notifier_block *nb,
3775 			     unsigned long action, void *data)
3776 {
3777 	unsigned long tmp, free_kbytes;
3778 
3779 	switch (action) {
3780 	case MEM_ONLINE:
3781 		/* Default max is 128MB. Leave alone if modified by operator. */
3782 		tmp = sysctl_user_reserve_kbytes;
3783 		if (0 < tmp && tmp < (1UL << 17))
3784 			init_user_reserve();
3785 
3786 		/* Default max is 8MB.  Leave alone if modified by operator. */
3787 		tmp = sysctl_admin_reserve_kbytes;
3788 		if (0 < tmp && tmp < (1UL << 13))
3789 			init_admin_reserve();
3790 
3791 		break;
3792 	case MEM_OFFLINE:
3793 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3794 
3795 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3796 			init_user_reserve();
3797 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3798 				sysctl_user_reserve_kbytes);
3799 		}
3800 
3801 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3802 			init_admin_reserve();
3803 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3804 				sysctl_admin_reserve_kbytes);
3805 		}
3806 		break;
3807 	default:
3808 		break;
3809 	}
3810 	return NOTIFY_OK;
3811 }
3812 
3813 static struct notifier_block reserve_mem_nb = {
3814 	.notifier_call = reserve_mem_notifier,
3815 };
3816 
init_reserve_notifier(void)3817 static int __meminit init_reserve_notifier(void)
3818 {
3819 	if (register_hotmemory_notifier(&reserve_mem_nb))
3820 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3821 
3822 	return 0;
3823 }
3824 subsys_initcall(init_reserve_notifier);
3825