1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 *
97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98 * MAP_PRIVATE (with Enhanced PAN supported):
99 * r: (no) no
100 * w: (no) no
101 * x: (yes) yes
102 */
103 pgprot_t protection_map[16] __ro_after_init = {
104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 return prot;
112 }
113 #endif
114
vm_get_page_prot(unsigned long vm_flags)115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121 return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 unsigned long vm_flags = vma->vm_flags;
134 pgprot_t vm_page_prot;
135
136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 if (vma_wants_writenotify(vma, vm_page_prot)) {
138 vm_flags &= ~VM_SHARED;
139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 }
141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146 * Requires inode->i_mapping->i_mmap_rwsem
147 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 struct file *file, struct address_space *mapping)
150 {
151 if (vma->vm_flags & VM_SHARED)
152 mapping_unmap_writable(mapping);
153
154 flush_dcache_mmap_lock(mapping);
155 vma_interval_tree_remove(vma, &mapping->i_mmap);
156 flush_dcache_mmap_unlock(mapping);
157 }
158
159 /*
160 * Unlink a file-based vm structure from its interval tree, to hide
161 * vma from rmap and vmtruncate before freeing its page tables.
162 */
unlink_file_vma(struct vm_area_struct * vma)163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 struct file *file = vma->vm_file;
166
167 if (file) {
168 struct address_space *mapping = file->f_mapping;
169 i_mmap_lock_write(mapping);
170 __remove_shared_vm_struct(vma, file, mapping);
171 i_mmap_unlock_write(mapping);
172 }
173 }
174
175 /*
176 * Close a vm structure and free it, returning the next.
177 */
remove_vma(struct vm_area_struct * vma)178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 struct vm_area_struct *next = vma->vm_next;
181
182 might_sleep();
183 if (vma->vm_ops && vma->vm_ops->close)
184 vma->vm_ops->close(vma);
185 if (vma->vm_file)
186 fput(vma->vm_file);
187 mpol_put(vma_policy(vma));
188 vm_area_free(vma);
189 return next;
190 }
191
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 unsigned long newbrk, oldbrk, origbrk;
197 struct mm_struct *mm = current->mm;
198 struct vm_area_struct *next;
199 unsigned long min_brk;
200 bool populate;
201 bool downgraded = false;
202 LIST_HEAD(uf);
203
204 if (mmap_write_lock_killable(mm)) ///申请写类型读写信号量
205 return -EINTR;
206
207 origbrk = mm->brk; ///brk记录当前进程动态分配区的底部
208
209 #ifdef CONFIG_COMPAT_BRK
210 /*
211 * CONFIG_COMPAT_BRK can still be overridden by setting
212 * randomize_va_space to 2, which will still cause mm->start_brk
213 * to be arbitrarily shifted
214 */
215 if (current->brk_randomized)
216 min_brk = mm->start_brk;
217 else
218 min_brk = mm->end_data;
219 #else
220 min_brk = mm->start_brk;
221 #endif
222 if (brk < min_brk)
223 goto out;
224
225 /*
226 * Check against rlimit here. If this check is done later after the test
227 * of oldbrk with newbrk then it can escape the test and let the data
228 * segment grow beyond its set limit the in case where the limit is
229 * not page aligned -Ram Gupta
230 */
231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 mm->end_data, mm->start_data))
233 goto out;
234
235 newbrk = PAGE_ALIGN(brk);
236 oldbrk = PAGE_ALIGN(mm->brk);
237 if (oldbrk == newbrk) {
238 mm->brk = brk;
239 goto success;
240 }
241
242 /*
243 * Always allow shrinking brk.
244 * __do_munmap() may downgrade mmap_lock to read.
245 */
246 if (brk <= mm->brk) { ///请求释放空间
247 int ret;
248
249 /*
250 * mm->brk must to be protected by write mmap_lock so update it
251 * before downgrading mmap_lock. When __do_munmap() fails,
252 * mm->brk will be restored from origbrk.
253 */
254 mm->brk = brk;
255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 if (ret < 0) {
257 mm->brk = origbrk;
258 goto out;
259 } else if (ret == 1) {
260 downgraded = true;
261 }
262 goto success;
263 }
264
265 /* Check against existing mmap mappings. */
266 next = find_vma(mm, oldbrk);
267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) ///以旧边界地址去查找vma, 发现有重叠,不需要寻找
268 goto out;
269
270 /* Ok, looks good - let it rip. */
271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0) ///无重叠,新分配一个vma
272 goto out;
273 mm->brk = brk; ///更新brk地址,即当前进程堆的起始地址
274
275 success:
276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; ///调用mlockall()系统调用设置VM_LOCKED,锁住进程所有虚拟地址空间,防止内存被交换出去
277 if (downgraded)
278 mmap_read_unlock(mm);
279 else
280 mmap_write_unlock(mm);
281 userfaultfd_unmap_complete(mm, &uf);
282 if (populate)
283 mm_populate(oldbrk, newbrk - oldbrk); ///mm_populate会立刻分配物理内存
284 return brk;
285
286 out:
287 mmap_write_unlock(mm);
288 return origbrk;
289 }
290
vma_compute_gap(struct vm_area_struct * vma)291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
292 {
293 unsigned long gap, prev_end;
294
295 /*
296 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 * allow two stack_guard_gaps between them here, and when choosing
298 * an unmapped area; whereas when expanding we only require one.
299 * That's a little inconsistent, but keeps the code here simpler.
300 */
301 gap = vm_start_gap(vma);
302 if (vma->vm_prev) {
303 prev_end = vm_end_gap(vma->vm_prev);
304 if (gap > prev_end)
305 gap -= prev_end;
306 else
307 gap = 0;
308 }
309 return gap;
310 }
311
312 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
314 {
315 unsigned long max = vma_compute_gap(vma), subtree_gap;
316 if (vma->vm_rb.rb_left) {
317 subtree_gap = rb_entry(vma->vm_rb.rb_left,
318 struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 if (subtree_gap > max)
320 max = subtree_gap;
321 }
322 if (vma->vm_rb.rb_right) {
323 subtree_gap = rb_entry(vma->vm_rb.rb_right,
324 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 if (subtree_gap > max)
326 max = subtree_gap;
327 }
328 return max;
329 }
330
browse_rb(struct mm_struct * mm)331 static int browse_rb(struct mm_struct *mm)
332 {
333 struct rb_root *root = &mm->mm_rb;
334 int i = 0, j, bug = 0;
335 struct rb_node *nd, *pn = NULL;
336 unsigned long prev = 0, pend = 0;
337
338 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 struct vm_area_struct *vma;
340 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 if (vma->vm_start < prev) {
342 pr_emerg("vm_start %lx < prev %lx\n",
343 vma->vm_start, prev);
344 bug = 1;
345 }
346 if (vma->vm_start < pend) {
347 pr_emerg("vm_start %lx < pend %lx\n",
348 vma->vm_start, pend);
349 bug = 1;
350 }
351 if (vma->vm_start > vma->vm_end) {
352 pr_emerg("vm_start %lx > vm_end %lx\n",
353 vma->vm_start, vma->vm_end);
354 bug = 1;
355 }
356 spin_lock(&mm->page_table_lock);
357 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
358 pr_emerg("free gap %lx, correct %lx\n",
359 vma->rb_subtree_gap,
360 vma_compute_subtree_gap(vma));
361 bug = 1;
362 }
363 spin_unlock(&mm->page_table_lock);
364 i++;
365 pn = nd;
366 prev = vma->vm_start;
367 pend = vma->vm_end;
368 }
369 j = 0;
370 for (nd = pn; nd; nd = rb_prev(nd))
371 j++;
372 if (i != j) {
373 pr_emerg("backwards %d, forwards %d\n", j, i);
374 bug = 1;
375 }
376 return bug ? -1 : i;
377 }
378
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 {
381 struct rb_node *nd;
382
383 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 struct vm_area_struct *vma;
385 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 VM_BUG_ON_VMA(vma != ignore &&
387 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
388 vma);
389 }
390 }
391
validate_mm(struct mm_struct * mm)392 static void validate_mm(struct mm_struct *mm)
393 {
394 int bug = 0;
395 int i = 0;
396 unsigned long highest_address = 0;
397 struct vm_area_struct *vma = mm->mmap;
398
399 while (vma) {
400 struct anon_vma *anon_vma = vma->anon_vma;
401 struct anon_vma_chain *avc;
402
403 if (anon_vma) {
404 anon_vma_lock_read(anon_vma);
405 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
406 anon_vma_interval_tree_verify(avc);
407 anon_vma_unlock_read(anon_vma);
408 }
409
410 highest_address = vm_end_gap(vma);
411 vma = vma->vm_next;
412 i++;
413 }
414 if (i != mm->map_count) {
415 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416 bug = 1;
417 }
418 if (highest_address != mm->highest_vm_end) {
419 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
420 mm->highest_vm_end, highest_address);
421 bug = 1;
422 }
423 i = browse_rb(mm);
424 if (i != mm->map_count) {
425 if (i != -1)
426 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 VM_BUG_ON_MM(bug, mm);
430 }
431 #else
432 #define validate_mm_rb(root, ignore) do { } while (0)
433 #define validate_mm(mm) do { } while (0)
434 #endif
435
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
437 struct vm_area_struct, vm_rb,
438 unsigned long, rb_subtree_gap, vma_compute_gap)
439
440 /*
441 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
442 * vma->vm_prev->vm_end values changed, without modifying the vma's position
443 * in the rbtree.
444 */
445 static void vma_gap_update(struct vm_area_struct *vma)
446 {
447 /*
448 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
449 * a callback function that does exactly what we want.
450 */
451 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 }
453
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)454 static inline void vma_rb_insert(struct vm_area_struct *vma,
455 struct rb_root *root)
456 {
457 /* All rb_subtree_gap values must be consistent prior to insertion */
458 validate_mm_rb(root, NULL);
459
460 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 }
462
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 {
465 /*
466 * Note rb_erase_augmented is a fairly large inline function,
467 * so make sure we instantiate it only once with our desired
468 * augmented rbtree callbacks.
469 */
470 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 }
472
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
474 struct rb_root *root,
475 struct vm_area_struct *ignore)
476 {
477 /*
478 * All rb_subtree_gap values must be consistent prior to erase,
479 * with the possible exception of
480 *
481 * a. the "next" vma being erased if next->vm_start was reduced in
482 * __vma_adjust() -> __vma_unlink()
483 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
484 * vma_rb_erase()
485 */
486 validate_mm_rb(root, ignore);
487
488 __vma_rb_erase(vma, root);
489 }
490
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
492 struct rb_root *root)
493 {
494 vma_rb_erase_ignore(vma, root, vma);
495 }
496
497 /*
498 * vma has some anon_vma assigned, and is already inserted on that
499 * anon_vma's interval trees.
500 *
501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502 * vma must be removed from the anon_vma's interval trees using
503 * anon_vma_interval_tree_pre_update_vma().
504 *
505 * After the update, the vma will be reinserted using
506 * anon_vma_interval_tree_post_update_vma().
507 *
508 * The entire update must be protected by exclusive mmap_lock and by
509 * the root anon_vma's mutex.
510 */
511 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 struct anon_vma_chain *avc;
524
525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 unsigned long end, struct vm_area_struct **pprev,
531 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535 mmap_assert_locked(mm);
536 __rb_link = &mm->mm_rb.rb_node;
537 rb_prev = __rb_parent = NULL;
538
539 while (*__rb_link) {
540 struct vm_area_struct *vma_tmp;
541
542 __rb_parent = *__rb_link;
543 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544
545 if (vma_tmp->vm_end > addr) {
546 /* Fail if an existing vma overlaps the area */
547 if (vma_tmp->vm_start < end) ///发现有VMA地址重叠
548 return -ENOMEM;
549 __rb_link = &__rb_parent->rb_left;
550 } else {
551 rb_prev = __rb_parent;
552 __rb_link = &__rb_parent->rb_right;
553 }
554 }
555
556 *pprev = NULL;
557 if (rb_prev)
558 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
559 *rb_link = __rb_link;
560 *rb_parent = __rb_parent;
561 return 0;
562 }
563
564 /*
565 * vma_next() - Get the next VMA.
566 * @mm: The mm_struct.
567 * @vma: The current vma.
568 *
569 * If @vma is NULL, return the first vma in the mm.
570 *
571 * Returns: The next VMA after @vma.
572 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
574 struct vm_area_struct *vma)
575 {
576 if (!vma)
577 return mm->mmap;
578
579 return vma->vm_next;
580 }
581
582 /*
583 * munmap_vma_range() - munmap VMAs that overlap a range.
584 * @mm: The mm struct
585 * @start: The start of the range.
586 * @len: The length of the range.
587 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
588 * @rb_link: the rb_node
589 * @rb_parent: the parent rb_node
590 *
591 * Find all the vm_area_struct that overlap from @start to
592 * @end and munmap them. Set @pprev to the previous vm_area_struct.
593 *
594 * Returns: -ENOMEM on munmap failure or 0 on success.
595 */
596 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
598 struct vm_area_struct **pprev, struct rb_node ***link,
599 struct rb_node **parent, struct list_head *uf)
600 {
601
602 while (find_vma_links(mm, start, start + len, pprev, link, parent)) ///寻找适合插入的红黑树节点
603 if (do_munmap(mm, start, len, uf))
604 return -ENOMEM;
605
606 return 0;
607 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)608 static unsigned long count_vma_pages_range(struct mm_struct *mm,
609 unsigned long addr, unsigned long end)
610 {
611 unsigned long nr_pages = 0;
612 struct vm_area_struct *vma;
613
614 /* Find first overlapping mapping */
615 vma = find_vma_intersection(mm, addr, end);
616 if (!vma)
617 return 0;
618
619 nr_pages = (min(end, vma->vm_end) -
620 max(addr, vma->vm_start)) >> PAGE_SHIFT;
621
622 /* Iterate over the rest of the overlaps */
623 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
624 unsigned long overlap_len;
625
626 if (vma->vm_start > end)
627 break;
628
629 overlap_len = min(end, vma->vm_end) - vma->vm_start;
630 nr_pages += overlap_len >> PAGE_SHIFT;
631 }
632
633 return nr_pages;
634 }
635
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
637 struct rb_node **rb_link, struct rb_node *rb_parent)
638 {
639 /* Update tracking information for the gap following the new vma. */
640 if (vma->vm_next)
641 vma_gap_update(vma->vm_next);
642 else
643 mm->highest_vm_end = vm_end_gap(vma);
644
645 /*
646 * vma->vm_prev wasn't known when we followed the rbtree to find the
647 * correct insertion point for that vma. As a result, we could not
648 * update the vma vm_rb parents rb_subtree_gap values on the way down.
649 * So, we first insert the vma with a zero rb_subtree_gap value
650 * (to be consistent with what we did on the way down), and then
651 * immediately update the gap to the correct value. Finally we
652 * rebalance the rbtree after all augmented values have been set.
653 */
654 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
655 vma->rb_subtree_gap = 0;
656 vma_gap_update(vma);
657 vma_rb_insert(vma, &mm->mm_rb);
658 }
659
__vma_link_file(struct vm_area_struct * vma)660 static void __vma_link_file(struct vm_area_struct *vma)
661 {
662 struct file *file;
663
664 file = vma->vm_file;
665 if (file) {
666 struct address_space *mapping = file->f_mapping;
667
668 if (vma->vm_flags & VM_SHARED)
669 mapping_allow_writable(mapping);
670
671 flush_dcache_mmap_lock(mapping);
672 ///mmap文件的vma加入文件inode的红黑树
673 vma_interval_tree_insert(vma, &mapping->i_mmap);
674 flush_dcache_mmap_unlock(mapping);
675 }
676 }
677
678 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680 struct vm_area_struct *prev, struct rb_node **rb_link,
681 struct rb_node *rb_parent)
682 {
683 __vma_link_list(mm, vma, prev); ///vma插入mmap链表
684 __vma_link_rb(mm, vma, rb_link, rb_parent); ///vma插入红黑树
685 }
686
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688 struct vm_area_struct *prev, struct rb_node **rb_link,
689 struct rb_node *rb_parent)
690 {
691 struct address_space *mapping = NULL;
692
693 if (vma->vm_file) {
694 mapping = vma->vm_file->f_mapping;
695 i_mmap_lock_write(mapping);
696 }
697
698 __vma_link(mm, vma, prev, rb_link, rb_parent);
699 ///vma添加到inode红黑树
700 __vma_link_file(vma);
701
702 if (mapping)
703 i_mmap_unlock_write(mapping);
704
705 mm->map_count++;
706 validate_mm(mm);
707 }
708
709 /*
710 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
711 * mm's list and rbtree. It has already been inserted into the interval tree.
712 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)713 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
714 {
715 struct vm_area_struct *prev;
716 struct rb_node **rb_link, *rb_parent;
717
718 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
719 &prev, &rb_link, &rb_parent))
720 BUG();
721 __vma_link(mm, vma, prev, rb_link, rb_parent);
722 mm->map_count++;
723 }
724
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)725 static __always_inline void __vma_unlink(struct mm_struct *mm,
726 struct vm_area_struct *vma,
727 struct vm_area_struct *ignore)
728 {
729 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
730 __vma_unlink_list(mm, vma);
731 /* Kill the cache */
732 vmacache_invalidate(mm);
733 }
734
735 /*
736 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
737 * is already present in an i_mmap tree without adjusting the tree.
738 * The following helper function should be used when such adjustments
739 * are necessary. The "insert" vma (if any) is to be inserted
740 * before we drop the necessary locks.
741 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)742 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
743 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
744 struct vm_area_struct *expand)
745 {
746 struct mm_struct *mm = vma->vm_mm;
747 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
748 struct address_space *mapping = NULL;
749 struct rb_root_cached *root = NULL;
750 struct anon_vma *anon_vma = NULL;
751 struct file *file = vma->vm_file;
752 bool start_changed = false, end_changed = false;
753 long adjust_next = 0;
754 int remove_next = 0;
755
756 if (next && !insert) {
757 struct vm_area_struct *exporter = NULL, *importer = NULL;
758
759 if (end >= next->vm_end) {
760 /*
761 * vma expands, overlapping all the next, and
762 * perhaps the one after too (mprotect case 6).
763 * The only other cases that gets here are
764 * case 1, case 7 and case 8.
765 */
766 if (next == expand) {
767 /*
768 * The only case where we don't expand "vma"
769 * and we expand "next" instead is case 8.
770 */
771 VM_WARN_ON(end != next->vm_end);
772 /*
773 * remove_next == 3 means we're
774 * removing "vma" and that to do so we
775 * swapped "vma" and "next".
776 */
777 remove_next = 3;
778 VM_WARN_ON(file != next->vm_file);
779 swap(vma, next);
780 } else {
781 VM_WARN_ON(expand != vma);
782 /*
783 * case 1, 6, 7, remove_next == 2 is case 6,
784 * remove_next == 1 is case 1 or 7.
785 */
786 remove_next = 1 + (end > next->vm_end);
787 VM_WARN_ON(remove_next == 2 &&
788 end != next->vm_next->vm_end);
789 /* trim end to next, for case 6 first pass */
790 end = next->vm_end;
791 }
792
793 exporter = next;
794 importer = vma;
795
796 /*
797 * If next doesn't have anon_vma, import from vma after
798 * next, if the vma overlaps with it.
799 */
800 if (remove_next == 2 && !next->anon_vma)
801 exporter = next->vm_next;
802
803 } else if (end > next->vm_start) {
804 /*
805 * vma expands, overlapping part of the next:
806 * mprotect case 5 shifting the boundary up.
807 */
808 adjust_next = (end - next->vm_start);
809 exporter = next;
810 importer = vma;
811 VM_WARN_ON(expand != importer);
812 } else if (end < vma->vm_end) {
813 /*
814 * vma shrinks, and !insert tells it's not
815 * split_vma inserting another: so it must be
816 * mprotect case 4 shifting the boundary down.
817 */
818 adjust_next = -(vma->vm_end - end);
819 exporter = vma;
820 importer = next;
821 VM_WARN_ON(expand != importer);
822 }
823
824 /*
825 * Easily overlooked: when mprotect shifts the boundary,
826 * make sure the expanding vma has anon_vma set if the
827 * shrinking vma had, to cover any anon pages imported.
828 */
829 if (exporter && exporter->anon_vma && !importer->anon_vma) {
830 int error;
831
832 importer->anon_vma = exporter->anon_vma;
833 error = anon_vma_clone(importer, exporter);
834 if (error)
835 return error;
836 }
837 }
838 again:
839 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
840
841 if (file) {
842 mapping = file->f_mapping;
843 root = &mapping->i_mmap;
844 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
845
846 if (adjust_next)
847 uprobe_munmap(next, next->vm_start, next->vm_end);
848
849 i_mmap_lock_write(mapping);
850 if (insert) {
851 /*
852 * Put into interval tree now, so instantiated pages
853 * are visible to arm/parisc __flush_dcache_page
854 * throughout; but we cannot insert into address
855 * space until vma start or end is updated.
856 */
857 __vma_link_file(insert);
858 }
859 }
860
861 anon_vma = vma->anon_vma;
862 if (!anon_vma && adjust_next)
863 anon_vma = next->anon_vma;
864 if (anon_vma) {
865 VM_WARN_ON(adjust_next && next->anon_vma &&
866 anon_vma != next->anon_vma);
867 anon_vma_lock_write(anon_vma);
868 anon_vma_interval_tree_pre_update_vma(vma);
869 if (adjust_next)
870 anon_vma_interval_tree_pre_update_vma(next);
871 }
872
873 if (file) {
874 flush_dcache_mmap_lock(mapping);
875 vma_interval_tree_remove(vma, root);
876 if (adjust_next)
877 vma_interval_tree_remove(next, root);
878 }
879
880 if (start != vma->vm_start) {
881 vma->vm_start = start;
882 start_changed = true;
883 }
884 if (end != vma->vm_end) {
885 vma->vm_end = end;
886 end_changed = true;
887 }
888 vma->vm_pgoff = pgoff;
889 if (adjust_next) {
890 next->vm_start += adjust_next;
891 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
892 }
893
894 if (file) {
895 if (adjust_next)
896 vma_interval_tree_insert(next, root);
897 vma_interval_tree_insert(vma, root);
898 flush_dcache_mmap_unlock(mapping);
899 }
900
901 if (remove_next) {
902 /*
903 * vma_merge has merged next into vma, and needs
904 * us to remove next before dropping the locks.
905 */
906 if (remove_next != 3)
907 __vma_unlink(mm, next, next);
908 else
909 /*
910 * vma is not before next if they've been
911 * swapped.
912 *
913 * pre-swap() next->vm_start was reduced so
914 * tell validate_mm_rb to ignore pre-swap()
915 * "next" (which is stored in post-swap()
916 * "vma").
917 */
918 __vma_unlink(mm, next, vma);
919 if (file)
920 __remove_shared_vm_struct(next, file, mapping);
921 } else if (insert) {
922 /*
923 * split_vma has split insert from vma, and needs
924 * us to insert it before dropping the locks
925 * (it may either follow vma or precede it).
926 */
927 __insert_vm_struct(mm, insert);
928 } else {
929 if (start_changed)
930 vma_gap_update(vma);
931 if (end_changed) {
932 if (!next)
933 mm->highest_vm_end = vm_end_gap(vma);
934 else if (!adjust_next)
935 vma_gap_update(next);
936 }
937 }
938
939 if (anon_vma) {
940 anon_vma_interval_tree_post_update_vma(vma);
941 if (adjust_next)
942 anon_vma_interval_tree_post_update_vma(next);
943 anon_vma_unlock_write(anon_vma);
944 }
945
946 if (file) {
947 i_mmap_unlock_write(mapping);
948 uprobe_mmap(vma);
949
950 if (adjust_next)
951 uprobe_mmap(next);
952 }
953
954 if (remove_next) {
955 if (file) {
956 uprobe_munmap(next, next->vm_start, next->vm_end);
957 fput(file);
958 }
959 if (next->anon_vma)
960 anon_vma_merge(vma, next);
961 mm->map_count--;
962 mpol_put(vma_policy(next));
963 vm_area_free(next);
964 /*
965 * In mprotect's case 6 (see comments on vma_merge),
966 * we must remove another next too. It would clutter
967 * up the code too much to do both in one go.
968 */
969 if (remove_next != 3) {
970 /*
971 * If "next" was removed and vma->vm_end was
972 * expanded (up) over it, in turn
973 * "next->vm_prev->vm_end" changed and the
974 * "vma->vm_next" gap must be updated.
975 */
976 next = vma->vm_next;
977 } else {
978 /*
979 * For the scope of the comment "next" and
980 * "vma" considered pre-swap(): if "vma" was
981 * removed, next->vm_start was expanded (down)
982 * over it and the "next" gap must be updated.
983 * Because of the swap() the post-swap() "vma"
984 * actually points to pre-swap() "next"
985 * (post-swap() "next" as opposed is now a
986 * dangling pointer).
987 */
988 next = vma;
989 }
990 if (remove_next == 2) {
991 remove_next = 1;
992 end = next->vm_end;
993 goto again;
994 }
995 else if (next)
996 vma_gap_update(next);
997 else {
998 /*
999 * If remove_next == 2 we obviously can't
1000 * reach this path.
1001 *
1002 * If remove_next == 3 we can't reach this
1003 * path because pre-swap() next is always not
1004 * NULL. pre-swap() "next" is not being
1005 * removed and its next->vm_end is not altered
1006 * (and furthermore "end" already matches
1007 * next->vm_end in remove_next == 3).
1008 *
1009 * We reach this only in the remove_next == 1
1010 * case if the "next" vma that was removed was
1011 * the highest vma of the mm. However in such
1012 * case next->vm_end == "end" and the extended
1013 * "vma" has vma->vm_end == next->vm_end so
1014 * mm->highest_vm_end doesn't need any update
1015 * in remove_next == 1 case.
1016 */
1017 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1018 }
1019 }
1020 if (insert && file)
1021 uprobe_mmap(insert);
1022
1023 validate_mm(mm);
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * If the vma has a ->close operation then the driver probably needs to release
1030 * per-vma resources, so we don't attempt to merge those.
1031 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1032 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1033 struct file *file, unsigned long vm_flags,
1034 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1035 {
1036 /*
1037 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1038 * match the flags but dirty bit -- the caller should mark
1039 * merged VMA as dirty. If dirty bit won't be excluded from
1040 * comparison, we increase pressure on the memory system forcing
1041 * the kernel to generate new VMAs when old one could be
1042 * extended instead.
1043 */
1044 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1045 return 0;
1046 if (vma->vm_file != file)
1047 return 0;
1048 if (vma->vm_ops && vma->vm_ops->close)
1049 return 0;
1050 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1051 return 0;
1052 return 1;
1053 }
1054
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1055 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1056 struct anon_vma *anon_vma2,
1057 struct vm_area_struct *vma)
1058 {
1059 /*
1060 * The list_is_singular() test is to avoid merging VMA cloned from
1061 * parents. This can improve scalability caused by anon_vma lock.
1062 */
1063 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1064 list_is_singular(&vma->anon_vma_chain)))
1065 return 1;
1066 return anon_vma1 == anon_vma2;
1067 }
1068
1069 /*
1070 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071 * in front of (at a lower virtual address and file offset than) the vma.
1072 *
1073 * We cannot merge two vmas if they have differently assigned (non-NULL)
1074 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1075 *
1076 * We don't check here for the merged mmap wrapping around the end of pagecache
1077 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1078 * wrap, nor mmaps which cover the final page at index -1UL.
1079 */
1080 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1081 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1082 struct anon_vma *anon_vma, struct file *file,
1083 pgoff_t vm_pgoff,
1084 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1085 {
1086 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1087 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1088 if (vma->vm_pgoff == vm_pgoff)
1089 return 1;
1090 }
1091 return 0;
1092 }
1093
1094 /*
1095 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1096 * beyond (at a higher virtual address and file offset than) the vma.
1097 *
1098 * We cannot merge two vmas if they have differently assigned (non-NULL)
1099 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1100 */
1101 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1102 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1103 struct anon_vma *anon_vma, struct file *file,
1104 pgoff_t vm_pgoff,
1105 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1106 {
1107 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1108 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1109 pgoff_t vm_pglen;
1110 vm_pglen = vma_pages(vma);
1111 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1112 return 1;
1113 }
1114 return 0;
1115 }
1116
1117 /*
1118 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1119 * whether that can be merged with its predecessor or its successor.
1120 * Or both (it neatly fills a hole).
1121 *
1122 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1123 * certain not to be mapped by the time vma_merge is called; but when
1124 * called for mprotect, it is certain to be already mapped (either at
1125 * an offset within prev, or at the start of next), and the flags of
1126 * this area are about to be changed to vm_flags - and the no-change
1127 * case has already been eliminated.
1128 *
1129 * The following mprotect cases have to be considered, where AAAA is
1130 * the area passed down from mprotect_fixup, never extending beyond one
1131 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1132 *
1133 * AAAA AAAA AAAA
1134 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1135 * cannot merge might become might become
1136 * PPNNNNNNNNNN PPPPPPPPPPNN
1137 * mmap, brk or case 4 below case 5 below
1138 * mremap move:
1139 * AAAA AAAA
1140 * PPPP NNNN PPPPNNNNXXXX
1141 * might become might become
1142 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1143 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1144 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1145 *
1146 * It is important for case 8 that the vma NNNN overlapping the
1147 * region AAAA is never going to extended over XXXX. Instead XXXX must
1148 * be extended in region AAAA and NNNN must be removed. This way in
1149 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1150 * rmap_locks, the properties of the merged vma will be already
1151 * correct for the whole merged range. Some of those properties like
1152 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1153 * be correct for the whole merged range immediately after the
1154 * rmap_locks are released. Otherwise if XXXX would be removed and
1155 * NNNN would be extended over the XXXX range, remove_migration_ptes
1156 * or other rmap walkers (if working on addresses beyond the "end"
1157 * parameter) may establish ptes with the wrong permissions of NNNN
1158 * instead of the right permissions of XXXX.
1159 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1160 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1161 struct vm_area_struct *prev, unsigned long addr,
1162 unsigned long end, unsigned long vm_flags,
1163 struct anon_vma *anon_vma, struct file *file,
1164 pgoff_t pgoff, struct mempolicy *policy,
1165 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1166 {
1167 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1168 struct vm_area_struct *area, *next;
1169 int err;
1170
1171 /*
1172 * We later require that vma->vm_flags == vm_flags,
1173 * so this tests vma->vm_flags & VM_SPECIAL, too.
1174 */
1175 if (vm_flags & VM_SPECIAL)
1176 return NULL;
1177
1178 next = vma_next(mm, prev);
1179 area = next;
1180 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1181 next = next->vm_next;
1182
1183 /* verify some invariant that must be enforced by the caller */
1184 VM_WARN_ON(prev && addr <= prev->vm_start);
1185 VM_WARN_ON(area && end > area->vm_end);
1186 VM_WARN_ON(addr >= end);
1187
1188 /*
1189 * Can it merge with the predecessor?
1190 */
1191 if (prev && prev->vm_end == addr &&
1192 mpol_equal(vma_policy(prev), policy) &&
1193 can_vma_merge_after(prev, vm_flags,
1194 anon_vma, file, pgoff,
1195 vm_userfaultfd_ctx)) {
1196 /*
1197 * OK, it can. Can we now merge in the successor as well?
1198 */
1199 if (next && end == next->vm_start &&
1200 mpol_equal(policy, vma_policy(next)) &&
1201 can_vma_merge_before(next, vm_flags,
1202 anon_vma, file,
1203 pgoff+pglen,
1204 vm_userfaultfd_ctx) &&
1205 is_mergeable_anon_vma(prev->anon_vma,
1206 next->anon_vma, NULL)) {
1207 /* cases 1, 6 */
1208 err = __vma_adjust(prev, prev->vm_start,
1209 next->vm_end, prev->vm_pgoff, NULL,
1210 prev);
1211 } else /* cases 2, 5, 7 */
1212 err = __vma_adjust(prev, prev->vm_start,
1213 end, prev->vm_pgoff, NULL, prev);
1214 if (err)
1215 return NULL;
1216 khugepaged_enter_vma_merge(prev, vm_flags);
1217 return prev;
1218 }
1219
1220 /*
1221 * Can this new request be merged in front of next?
1222 */
1223 if (next && end == next->vm_start &&
1224 mpol_equal(policy, vma_policy(next)) &&
1225 can_vma_merge_before(next, vm_flags,
1226 anon_vma, file, pgoff+pglen,
1227 vm_userfaultfd_ctx)) {
1228 if (prev && addr < prev->vm_end) /* case 4 */
1229 err = __vma_adjust(prev, prev->vm_start,
1230 addr, prev->vm_pgoff, NULL, next);
1231 else { /* cases 3, 8 */
1232 err = __vma_adjust(area, addr, next->vm_end,
1233 next->vm_pgoff - pglen, NULL, next);
1234 /*
1235 * In case 3 area is already equal to next and
1236 * this is a noop, but in case 8 "area" has
1237 * been removed and next was expanded over it.
1238 */
1239 area = next;
1240 }
1241 if (err)
1242 return NULL;
1243 khugepaged_enter_vma_merge(area, vm_flags);
1244 return area;
1245 }
1246
1247 return NULL;
1248 }
1249
1250 /*
1251 * Rough compatibility check to quickly see if it's even worth looking
1252 * at sharing an anon_vma.
1253 *
1254 * They need to have the same vm_file, and the flags can only differ
1255 * in things that mprotect may change.
1256 *
1257 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1258 * we can merge the two vma's. For example, we refuse to merge a vma if
1259 * there is a vm_ops->close() function, because that indicates that the
1260 * driver is doing some kind of reference counting. But that doesn't
1261 * really matter for the anon_vma sharing case.
1262 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1263 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1264 {
1265 return a->vm_end == b->vm_start &&
1266 mpol_equal(vma_policy(a), vma_policy(b)) &&
1267 a->vm_file == b->vm_file &&
1268 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1269 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1270 }
1271
1272 /*
1273 * Do some basic sanity checking to see if we can re-use the anon_vma
1274 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1275 * the same as 'old', the other will be the new one that is trying
1276 * to share the anon_vma.
1277 *
1278 * NOTE! This runs with mm_sem held for reading, so it is possible that
1279 * the anon_vma of 'old' is concurrently in the process of being set up
1280 * by another page fault trying to merge _that_. But that's ok: if it
1281 * is being set up, that automatically means that it will be a singleton
1282 * acceptable for merging, so we can do all of this optimistically. But
1283 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1284 *
1285 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1286 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1287 * is to return an anon_vma that is "complex" due to having gone through
1288 * a fork).
1289 *
1290 * We also make sure that the two vma's are compatible (adjacent,
1291 * and with the same memory policies). That's all stable, even with just
1292 * a read lock on the mm_sem.
1293 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1294 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1295 {
1296 if (anon_vma_compatible(a, b)) {
1297 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1298
1299 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1300 return anon_vma;
1301 }
1302 return NULL;
1303 }
1304
1305 /*
1306 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1307 * neighbouring vmas for a suitable anon_vma, before it goes off
1308 * to allocate a new anon_vma. It checks because a repetitive
1309 * sequence of mprotects and faults may otherwise lead to distinct
1310 * anon_vmas being allocated, preventing vma merge in subsequent
1311 * mprotect.
1312 */
1313 ///复用条件:两个vma必须相邻,VMA的内存policy相同,vm_file相同等。
find_mergeable_anon_vma(struct vm_area_struct * vma)1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316 struct anon_vma *anon_vma = NULL;
1317
1318 /* Try next first. */
1319 if (vma->vm_next) {
1320 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321 if (anon_vma)
1322 return anon_vma;
1323 }
1324
1325 /* Try prev next. */
1326 if (vma->vm_prev)
1327 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
1329 /*
1330 * We might reach here with anon_vma == NULL if we can't find
1331 * any reusable anon_vma.
1332 * There's no absolute need to look only at touching neighbours:
1333 * we could search further afield for "compatible" anon_vmas.
1334 * But it would probably just be a waste of time searching,
1335 * or lead to too many vmas hanging off the same anon_vma.
1336 * We're trying to allow mprotect remerging later on,
1337 * not trying to minimize memory used for anon_vmas.
1338 */
1339 return anon_vma;
1340 }
1341
1342 /*
1343 * If a hint addr is less than mmap_min_addr change hint to be as
1344 * low as possible but still greater than mmap_min_addr
1345 */
round_hint_to_min(unsigned long hint)1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348 hint &= PAGE_MASK;
1349 if (((void *)hint != NULL) &&
1350 (hint < mmap_min_addr))
1351 return PAGE_ALIGN(mmap_min_addr);
1352 return hint;
1353 }
1354
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1355 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1356 unsigned long len)
1357 {
1358 unsigned long locked, lock_limit;
1359
1360 /* mlock MCL_FUTURE? */
1361 if (flags & VM_LOCKED) {
1362 locked = len >> PAGE_SHIFT;
1363 locked += mm->locked_vm;
1364 lock_limit = rlimit(RLIMIT_MEMLOCK);
1365 lock_limit >>= PAGE_SHIFT;
1366 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1367 return -EAGAIN;
1368 }
1369 return 0;
1370 }
1371
file_mmap_size_max(struct file * file,struct inode * inode)1372 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1373 {
1374 if (S_ISREG(inode->i_mode))
1375 return MAX_LFS_FILESIZE;
1376
1377 if (S_ISBLK(inode->i_mode))
1378 return MAX_LFS_FILESIZE;
1379
1380 if (S_ISSOCK(inode->i_mode))
1381 return MAX_LFS_FILESIZE;
1382
1383 /* Special "we do even unsigned file positions" case */
1384 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1385 return 0;
1386
1387 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1388 return ULONG_MAX;
1389 }
1390
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1391 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1392 unsigned long pgoff, unsigned long len)
1393 {
1394 u64 maxsize = file_mmap_size_max(file, inode);
1395
1396 if (maxsize && len > maxsize)
1397 return false;
1398 maxsize -= len;
1399 if (pgoff > maxsize >> PAGE_SHIFT)
1400 return false;
1401 return true;
1402 }
1403
1404 /*
1405 * The caller must write-lock current->mm->mmap_lock.
1406 */
1407 ///mmap底层实现
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409 unsigned long len, unsigned long prot,
1410 unsigned long flags, unsigned long pgoff,
1411 unsigned long *populate, struct list_head *uf)
1412 {
1413 struct mm_struct *mm = current->mm;
1414 vm_flags_t vm_flags;
1415 int pkey = 0;
1416
1417 *populate = 0;
1418
1419 if (!len)
1420 return -EINVAL;
1421
1422 /*
1423 * Does the application expect PROT_READ to imply PROT_EXEC?
1424 *
1425 * (the exception is when the underlying filesystem is noexec
1426 * mounted, in which case we dont add PROT_EXEC.)
1427 */
1428 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429 if (!(file && path_noexec(&file->f_path)))
1430 prot |= PROT_EXEC;
1431
1432 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1433 if (flags & MAP_FIXED_NOREPLACE)
1434 flags |= MAP_FIXED;
1435
1436 if (!(flags & MAP_FIXED))
1437 addr = round_hint_to_min(addr);
1438
1439 /* Careful about overflows.. */
1440 len = PAGE_ALIGN(len);
1441 if (!len)
1442 return -ENOMEM;
1443
1444 /* offset overflow? */
1445 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446 return -EOVERFLOW;
1447
1448 /* Too many mappings? */
1449 if (mm->map_count > sysctl_max_map_count)
1450 return -ENOMEM;
1451
1452 /* Obtain the address to map to. we verify (or select) it and ensure
1453 * that it represents a valid section of the address space.
1454 */
1455 ///找到一个未被使用,并且足够大的虚拟地址空间
1456 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1457 if (IS_ERR_VALUE(addr))
1458 return addr;
1459
1460 if (flags & MAP_FIXED_NOREPLACE) {
1461 if (find_vma_intersection(mm, addr, addr + len))
1462 return -EEXIST;
1463 }
1464
1465 if (prot == PROT_EXEC) {
1466 pkey = execute_only_pkey(mm);
1467 if (pkey < 0)
1468 pkey = 0;
1469 }
1470
1471 /* Do simple checking here so the lower-level routines won't have
1472 * to. we assume access permissions have been handled by the open
1473 * of the memory object, so we don't do any here.
1474 */
1475 ///设置内存属性
1476 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1477 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1478
1479 if (flags & MAP_LOCKED)
1480 if (!can_do_mlock())
1481 return -EPERM;
1482
1483 if (mlock_future_check(mm, vm_flags, len))
1484 return -EAGAIN;
1485
1486 if (file) {
1487 ///如果是文件映射,找到inode,作进一步检查
1488 struct inode *inode = file_inode(file);
1489 unsigned long flags_mask;
1490
1491 if (!file_mmap_ok(file, inode, pgoff, len))
1492 return -EOVERFLOW;
1493
1494 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1495
1496 switch (flags & MAP_TYPE) {
1497 case MAP_SHARED:
1498 /*
1499 * Force use of MAP_SHARED_VALIDATE with non-legacy
1500 * flags. E.g. MAP_SYNC is dangerous to use with
1501 * MAP_SHARED as you don't know which consistency model
1502 * you will get. We silently ignore unsupported flags
1503 * with MAP_SHARED to preserve backward compatibility.
1504 */
1505 flags &= LEGACY_MAP_MASK;
1506 fallthrough;
1507 case MAP_SHARED_VALIDATE:
1508 if (flags & ~flags_mask)
1509 return -EOPNOTSUPP;
1510 if (prot & PROT_WRITE) {
1511 if (!(file->f_mode & FMODE_WRITE))
1512 return -EACCES;
1513 if (IS_SWAPFILE(file->f_mapping->host))
1514 return -ETXTBSY;
1515 }
1516
1517 /*
1518 * Make sure we don't allow writing to an append-only
1519 * file..
1520 */
1521 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1522 return -EACCES;
1523
1524 vm_flags |= VM_SHARED | VM_MAYSHARE;
1525 if (!(file->f_mode & FMODE_WRITE))
1526 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1527 fallthrough;
1528 case MAP_PRIVATE:
1529 if (!(file->f_mode & FMODE_READ))
1530 return -EACCES;
1531 if (path_noexec(&file->f_path)) {
1532 if (vm_flags & VM_EXEC)
1533 return -EPERM;
1534 vm_flags &= ~VM_MAYEXEC;
1535 }
1536
1537 if (!file->f_op->mmap)
1538 return -ENODEV;
1539 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1540 return -EINVAL;
1541 break;
1542
1543 default:
1544 return -EINVAL;
1545 }
1546 } else {
1547 switch (flags & MAP_TYPE) {
1548 case MAP_SHARED:
1549 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1550 return -EINVAL;
1551 /*
1552 * Ignore pgoff.
1553 */
1554 pgoff = 0;
1555 vm_flags |= VM_SHARED | VM_MAYSHARE;
1556 break;
1557 case MAP_PRIVATE:
1558 /*
1559 * Set pgoff according to addr for anon_vma.
1560 */
1561 pgoff = addr >> PAGE_SHIFT;
1562 break;
1563 default:
1564 return -EINVAL;
1565 }
1566 }
1567
1568 /*
1569 * Set 'VM_NORESERVE' if we should not account for the
1570 * memory use of this mapping.
1571 */
1572 if (flags & MAP_NORESERVE) {
1573 /* We honor MAP_NORESERVE if allowed to overcommit */
1574 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1575 vm_flags |= VM_NORESERVE;
1576
1577 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1578 if (file && is_file_hugepages(file))
1579 vm_flags |= VM_NORESERVE;
1580 }
1581
1582 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1583 if (!IS_ERR_VALUE(addr) &&
1584 ((vm_flags & VM_LOCKED) ||
1585 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1586 *populate = len;
1587 return addr;
1588 }
1589
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1591 unsigned long prot, unsigned long flags,
1592 unsigned long fd, unsigned long pgoff)
1593 {
1594 struct file *file = NULL;
1595 unsigned long retval;
1596
1597 if (!(flags & MAP_ANONYMOUS)) {
1598 audit_mmap_fd(fd, flags);
1599 file = fget(fd);
1600 if (!file)
1601 return -EBADF;
1602 if (is_file_hugepages(file)) {
1603 len = ALIGN(len, huge_page_size(hstate_file(file)));
1604 } else if (unlikely(flags & MAP_HUGETLB)) {
1605 retval = -EINVAL;
1606 goto out_fput;
1607 }
1608 } else if (flags & MAP_HUGETLB) {
1609 struct ucounts *ucounts = NULL;
1610 struct hstate *hs;
1611
1612 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1613 if (!hs)
1614 return -EINVAL;
1615
1616 len = ALIGN(len, huge_page_size(hs));
1617 /*
1618 * VM_NORESERVE is used because the reservations will be
1619 * taken when vm_ops->mmap() is called
1620 * A dummy user value is used because we are not locking
1621 * memory so no accounting is necessary
1622 */
1623 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1624 VM_NORESERVE,
1625 &ucounts, HUGETLB_ANONHUGE_INODE,
1626 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1627 if (IS_ERR(file))
1628 return PTR_ERR(file);
1629 }
1630
1631 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1632 out_fput:
1633 if (file)
1634 fput(file);
1635 return retval;
1636 }
1637
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1638 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1639 unsigned long, prot, unsigned long, flags,
1640 unsigned long, fd, unsigned long, pgoff)
1641 {
1642 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1643 }
1644
1645 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1646 struct mmap_arg_struct {
1647 unsigned long addr;
1648 unsigned long len;
1649 unsigned long prot;
1650 unsigned long flags;
1651 unsigned long fd;
1652 unsigned long offset;
1653 };
1654
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1655 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1656 {
1657 struct mmap_arg_struct a;
1658
1659 if (copy_from_user(&a, arg, sizeof(a)))
1660 return -EFAULT;
1661 if (offset_in_page(a.offset))
1662 return -EINVAL;
1663
1664 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1665 a.offset >> PAGE_SHIFT);
1666 }
1667 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1668
1669 /*
1670 * Some shared mappings will want the pages marked read-only
1671 * to track write events. If so, we'll downgrade vm_page_prot
1672 * to the private version (using protection_map[] without the
1673 * VM_SHARED bit).
1674 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1675 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1676 {
1677 vm_flags_t vm_flags = vma->vm_flags;
1678 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1679
1680 /* If it was private or non-writable, the write bit is already clear */
1681 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1682 return 0;
1683
1684 /* The backer wishes to know when pages are first written to? */
1685 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1686 return 1;
1687
1688 /* The open routine did something to the protections that pgprot_modify
1689 * won't preserve? */
1690 if (pgprot_val(vm_page_prot) !=
1691 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1692 return 0;
1693
1694 /* Do we need to track softdirty? */
1695 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1696 return 1;
1697
1698 /* Specialty mapping? */
1699 if (vm_flags & VM_PFNMAP)
1700 return 0;
1701
1702 /* Can the mapping track the dirty pages? */
1703 return vma->vm_file && vma->vm_file->f_mapping &&
1704 mapping_can_writeback(vma->vm_file->f_mapping);
1705 }
1706
1707 /*
1708 * We account for memory if it's a private writeable mapping,
1709 * not hugepages and VM_NORESERVE wasn't set.
1710 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1711 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1712 {
1713 /*
1714 * hugetlb has its own accounting separate from the core VM
1715 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1716 */
1717 if (file && is_file_hugepages(file))
1718 return 0;
1719
1720 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1721 }
1722
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1723 unsigned long mmap_region(struct file *file, unsigned long addr,
1724 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1725 struct list_head *uf)
1726 {
1727 struct mm_struct *mm = current->mm;
1728 struct vm_area_struct *vma, *prev, *merge;
1729 int error;
1730 struct rb_node **rb_link, *rb_parent;
1731 unsigned long charged = 0;
1732
1733 /* Check against address space limit. */
1734 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1735 unsigned long nr_pages;
1736
1737 /*
1738 * MAP_FIXED may remove pages of mappings that intersects with
1739 * requested mapping. Account for the pages it would unmap.
1740 */
1741 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1742
1743 if (!may_expand_vm(mm, vm_flags,
1744 (len >> PAGE_SHIFT) - nr_pages))
1745 return -ENOMEM;
1746 }
1747
1748 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1749 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1750 return -ENOMEM;
1751 /*
1752 * Private writable mapping: check memory availability
1753 */
1754 if (accountable_mapping(file, vm_flags)) {
1755 charged = len >> PAGE_SHIFT;
1756 if (security_vm_enough_memory_mm(mm, charged))
1757 return -ENOMEM;
1758 vm_flags |= VM_ACCOUNT;
1759 }
1760
1761 /*
1762 * Can we just expand an old mapping?
1763 */
1764 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, ///尝试合并vma
1765 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1766 if (vma)
1767 goto out;
1768
1769 /*
1770 * Determine the object being mapped and call the appropriate
1771 * specific mapper. the address has already been validated, but
1772 * not unmapped, but the maps are removed from the list.
1773 */
1774 vma = vm_area_alloc(mm); ///分配一个新vma
1775 if (!vma) {
1776 error = -ENOMEM;
1777 goto unacct_error;
1778 }
1779
1780 vma->vm_start = addr;
1781 vma->vm_end = addr + len;
1782 vma->vm_flags = vm_flags;
1783 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1784 vma->vm_pgoff = pgoff;
1785
1786 ///文件映射
1787 if (file) {
1788 if (vm_flags & VM_SHARED) {
1789 error = mapping_map_writable(file->f_mapping);
1790 if (error)
1791 goto free_vma;
1792 }
1793
1794 vma->vm_file = get_file(file);
1795 ///读文件数据函数与vma相关联,当缺页异常时,回调文件函数读内容到pagecache
1796 ///比如ext4_file_mmap->.fault=ext4_filemap_fault
1797 error = call_mmap(file, vma);
1798 if (error)
1799 goto unmap_and_free_vma;
1800
1801 /* Can addr have changed??
1802 *
1803 * Answer: Yes, several device drivers can do it in their
1804 * f_op->mmap method. -DaveM
1805 * Bug: If addr is changed, prev, rb_link, rb_parent should
1806 * be updated for vma_link()
1807 */
1808 WARN_ON_ONCE(addr != vma->vm_start);
1809
1810 addr = vma->vm_start;
1811
1812 /* If vm_flags changed after call_mmap(), we should try merge vma again
1813 * as we may succeed this time.
1814 */
1815 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1816 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1817 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1818 if (merge) {
1819 /* ->mmap() can change vma->vm_file and fput the original file. So
1820 * fput the vma->vm_file here or we would add an extra fput for file
1821 * and cause general protection fault ultimately.
1822 */
1823 fput(vma->vm_file);
1824 vm_area_free(vma);
1825 vma = merge;
1826 /* Update vm_flags to pick up the change. */
1827 vm_flags = vma->vm_flags;
1828 goto unmap_writable;
1829 }
1830 }
1831
1832 vm_flags = vma->vm_flags;
1833 } else if (vm_flags & VM_SHARED) { ///共享映射
1834 error = shmem_zero_setup(vma); ///共享匿名映射,关联shmem的vma操作(ipc共享内存一样)
1835 if (error)
1836 goto free_vma;
1837 } else {
1838 vma_set_anonymous(vma); ///私有匿名映射
1839 }
1840
1841 /* Allow architectures to sanity-check the vm_flags */
1842 if (!arch_validate_flags(vma->vm_flags)) {
1843 error = -EINVAL;
1844 if (file)
1845 goto unmap_and_free_vma;
1846 else
1847 goto free_vma;
1848 }
1849
1850 vma_link(mm, vma, prev, rb_link, rb_parent); ///vma加入mm系统
1851 /* Once vma denies write, undo our temporary denial count */
1852 unmap_writable:
1853 if (file && vm_flags & VM_SHARED)
1854 mapping_unmap_writable(file->f_mapping);
1855 file = vma->vm_file;
1856 out:
1857 perf_event_mmap(vma);
1858
1859 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1860 if (vm_flags & VM_LOCKED) {
1861 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1862 is_vm_hugetlb_page(vma) ||
1863 vma == get_gate_vma(current->mm))
1864 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1865 else
1866 mm->locked_vm += (len >> PAGE_SHIFT);
1867 }
1868
1869 if (file)
1870 uprobe_mmap(vma);
1871
1872 /*
1873 * New (or expanded) vma always get soft dirty status.
1874 * Otherwise user-space soft-dirty page tracker won't
1875 * be able to distinguish situation when vma area unmapped,
1876 * then new mapped in-place (which must be aimed as
1877 * a completely new data area).
1878 */
1879 vma->vm_flags |= VM_SOFTDIRTY;
1880
1881 vma_set_page_prot(vma);
1882
1883 return addr;
1884
1885 unmap_and_free_vma:
1886 fput(vma->vm_file);
1887 vma->vm_file = NULL;
1888
1889 /* Undo any partial mapping done by a device driver. */
1890 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1891 charged = 0;
1892 if (vm_flags & VM_SHARED)
1893 mapping_unmap_writable(file->f_mapping);
1894 free_vma:
1895 vm_area_free(vma);
1896 unacct_error:
1897 if (charged)
1898 vm_unacct_memory(charged);
1899 return error;
1900 }
1901
unmapped_area(struct vm_unmapped_area_info * info)1902 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1903 {
1904 /*
1905 * We implement the search by looking for an rbtree node that
1906 * immediately follows a suitable gap. That is,
1907 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1908 * - gap_end = vma->vm_start >= info->low_limit + length;
1909 * - gap_end - gap_start >= length
1910 */
1911
1912 struct mm_struct *mm = current->mm;
1913 struct vm_area_struct *vma;
1914 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1915
1916 /* Adjust search length to account for worst case alignment overhead */
1917 length = info->length + info->align_mask;
1918 if (length < info->length)
1919 return -ENOMEM;
1920
1921 /* Adjust search limits by the desired length */
1922 if (info->high_limit < length)
1923 return -ENOMEM;
1924 high_limit = info->high_limit - length;
1925
1926 if (info->low_limit > high_limit)
1927 return -ENOMEM;
1928 low_limit = info->low_limit + length;
1929
1930 /* Check if rbtree root looks promising */
1931 ///第一次分配虚拟内存时,红黑树是空的,说明内存充足,直接跳转check_highest
1932 if (RB_EMPTY_ROOT(&mm->mm_rb))
1933 goto check_highest;
1934 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1935 ///当前节点vma是否满足需求?
1936 if (vma->rb_subtree_gap < length)
1937 goto check_highest;
1938
1939 while (true) {
1940 ///先从左子树开始找
1941 /* Visit left subtree if it looks promising */
1942 gap_end = vm_start_gap(vma);
1943 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1944 struct vm_area_struct *left =
1945 rb_entry(vma->vm_rb.rb_left,
1946 struct vm_area_struct, vm_rb);
1947 if (left->rb_subtree_gap >= length) {
1948 vma = left;
1949 continue;
1950 }
1951 }
1952
1953 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1954 check_current:
1955 /* Check if current node has a suitable gap */
1956 if (gap_start > high_limit)
1957 return -ENOMEM;
1958 if (gap_end >= low_limit &&
1959 gap_end > gap_start && gap_end - gap_start >= length)
1960 goto found;
1961
1962 ///从右子树开始找
1963 /* Visit right subtree if it looks promising */
1964 if (vma->vm_rb.rb_right) {
1965 struct vm_area_struct *right =
1966 rb_entry(vma->vm_rb.rb_right,
1967 struct vm_area_struct, vm_rb);
1968 if (right->rb_subtree_gap >= length) {
1969 vma = right;
1970 continue;
1971 }
1972 }
1973
1974 ///往上一层根子树找
1975 /* Go back up the rbtree to find next candidate node */
1976 while (true) {
1977 struct rb_node *prev = &vma->vm_rb;
1978 if (!rb_parent(prev))
1979 goto check_highest;
1980 vma = rb_entry(rb_parent(prev),
1981 struct vm_area_struct, vm_rb);
1982 if (prev == vma->vm_rb.rb_left) {
1983 gap_start = vm_end_gap(vma->vm_prev);
1984 gap_end = vm_start_gap(vma);
1985 goto check_current;
1986 }
1987 }
1988 }
1989
1990 check_highest:
1991 /* Check highest gap, which does not precede any rbtree node */
1992 gap_start = mm->highest_vm_end;
1993 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1994 ///当前红黑树没找到,判断最后一个vma地址到最大地址,若仍然不满足,说明oom了,报错
1995 if (gap_start > high_limit)
1996 return -ENOMEM;
1997
1998 found:
1999 /* We found a suitable gap. Clip it with the original low_limit. */
2000 if (gap_start < info->low_limit)
2001 gap_start = info->low_limit;
2002
2003 /* Adjust gap address to the desired alignment */
2004 gap_start += (info->align_offset - gap_start) & info->align_mask;
2005
2006 VM_BUG_ON(gap_start + info->length > info->high_limit);
2007 VM_BUG_ON(gap_start + info->length > gap_end);
2008 return gap_start;
2009 }
2010
unmapped_area_topdown(struct vm_unmapped_area_info * info)2011 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2012 {
2013 struct mm_struct *mm = current->mm;
2014 struct vm_area_struct *vma;
2015 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2016
2017 /* Adjust search length to account for worst case alignment overhead */
2018 length = info->length + info->align_mask;
2019 if (length < info->length)
2020 return -ENOMEM;
2021
2022 /*
2023 * Adjust search limits by the desired length.
2024 * See implementation comment at top of unmapped_area().
2025 */
2026 ///从高地址开始遍历
2027 gap_end = info->high_limit;
2028 if (gap_end < length)
2029 return -ENOMEM;
2030 high_limit = gap_end - length;
2031
2032 if (info->low_limit > high_limit)
2033 return -ENOMEM;
2034 low_limit = info->low_limit + length;
2035
2036 /* Check highest gap, which does not precede any rbtree node */
2037 gap_start = mm->highest_vm_end;
2038 if (gap_start <= high_limit)
2039 goto found_highest;
2040
2041 /* Check if rbtree root looks promising */
2042 if (RB_EMPTY_ROOT(&mm->mm_rb))
2043 return -ENOMEM;
2044 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2045 if (vma->rb_subtree_gap < length)
2046 return -ENOMEM;
2047
2048 while (true) {
2049 /* Visit right subtree if it looks promising */
2050 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2051 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2052 struct vm_area_struct *right =
2053 rb_entry(vma->vm_rb.rb_right,
2054 struct vm_area_struct, vm_rb);
2055 if (right->rb_subtree_gap >= length) {
2056 vma = right;
2057 continue;
2058 }
2059 }
2060
2061 check_current:
2062 /* Check if current node has a suitable gap */
2063 gap_end = vm_start_gap(vma);
2064 if (gap_end < low_limit)
2065 return -ENOMEM;
2066 if (gap_start <= high_limit &&
2067 gap_end > gap_start && gap_end - gap_start >= length)
2068 goto found;
2069
2070 /* Visit left subtree if it looks promising */
2071 if (vma->vm_rb.rb_left) {
2072 struct vm_area_struct *left =
2073 rb_entry(vma->vm_rb.rb_left,
2074 struct vm_area_struct, vm_rb);
2075 if (left->rb_subtree_gap >= length) {
2076 vma = left;
2077 continue;
2078 }
2079 }
2080
2081 /* Go back up the rbtree to find next candidate node */
2082 while (true) {
2083 struct rb_node *prev = &vma->vm_rb;
2084 if (!rb_parent(prev))
2085 return -ENOMEM;
2086 vma = rb_entry(rb_parent(prev),
2087 struct vm_area_struct, vm_rb);
2088 if (prev == vma->vm_rb.rb_right) {
2089 gap_start = vma->vm_prev ?
2090 vm_end_gap(vma->vm_prev) : 0;
2091 goto check_current;
2092 }
2093 }
2094 }
2095
2096 found:
2097 /* We found a suitable gap. Clip it with the original high_limit. */
2098 if (gap_end > info->high_limit)
2099 gap_end = info->high_limit;
2100
2101 found_highest:
2102 /* Compute highest gap address at the desired alignment */
2103 gap_end -= info->length;
2104 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2105
2106 VM_BUG_ON(gap_end < info->low_limit);
2107 VM_BUG_ON(gap_end < gap_start);
2108 return gap_end;
2109 }
2110
2111 /*
2112 * Search for an unmapped address range.
2113 *
2114 * We are looking for a range that:
2115 * - does not intersect with any VMA;
2116 * - is contained within the [low_limit, high_limit) interval;
2117 * - is at least the desired size.
2118 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2119 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2120 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2121 {
2122 unsigned long addr;
2123
2124 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2125 addr = unmapped_area_topdown(info);
2126 else
2127 addr = unmapped_area(info);
2128
2129 trace_vm_unmapped_area(addr, info);
2130 return addr;
2131 }
2132
2133 #ifndef arch_get_mmap_end
2134 #define arch_get_mmap_end(addr) (TASK_SIZE)
2135 #endif
2136
2137 #ifndef arch_get_mmap_base
2138 #define arch_get_mmap_base(addr, base) (base)
2139 #endif
2140
2141 /* Get an address range which is currently unmapped.
2142 * For shmat() with addr=0.
2143 *
2144 * Ugly calling convention alert:
2145 * Return value with the low bits set means error value,
2146 * ie
2147 * if (ret & ~PAGE_MASK)
2148 * error = ret;
2149 *
2150 * This function "knows" that -ENOMEM has the bits set.
2151 */
2152 #ifndef HAVE_ARCH_UNMAPPED_AREA
2153 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2154 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2155 unsigned long len, unsigned long pgoff, unsigned long flags)
2156 {
2157 struct mm_struct *mm = current->mm;
2158 struct vm_area_struct *vma, *prev;
2159 struct vm_unmapped_area_info info;
2160 const unsigned long mmap_end = arch_get_mmap_end(addr);
2161
2162 if (len > mmap_end - mmap_min_addr)
2163 return -ENOMEM;
2164
2165 if (flags & MAP_FIXED)
2166 return addr;
2167
2168 ///如果addr刚好空闲,且满足本次分配,返回首地址
2169 if (addr) {
2170 addr = PAGE_ALIGN(addr);
2171 vma = find_vma_prev(mm, addr, &prev);
2172 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2173 (!vma || addr + len <= vm_start_gap(vma)) &&
2174 (!prev || addr >= vm_end_gap(prev)))
2175 return addr;
2176 }
2177
2178 ///不满足需求,初始化info,进一步扫描mmap映射区查找满足请求的内存
2179 info.flags = 0;
2180 info.length = len;
2181 info.low_limit = mm->mmap_base;
2182 info.high_limit = mmap_end;
2183 info.align_mask = 0;
2184 info.align_offset = 0;
2185 return vm_unmapped_area(&info);
2186 }
2187 #endif
2188
2189 /*
2190 * This mmap-allocator allocates new areas top-down from below the
2191 * stack's low limit (the base):
2192 */
2193 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2194 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2195 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2196 unsigned long len, unsigned long pgoff,
2197 unsigned long flags)
2198 {
2199 struct vm_area_struct *vma, *prev;
2200 struct mm_struct *mm = current->mm;
2201 struct vm_unmapped_area_info info;
2202 const unsigned long mmap_end = arch_get_mmap_end(addr);
2203
2204 /* requested length too big for entire address space */
2205 if (len > mmap_end - mmap_min_addr)
2206 return -ENOMEM;
2207
2208 if (flags & MAP_FIXED)
2209 return addr;
2210
2211 /* requesting a specific address */
2212 if (addr) {
2213 addr = PAGE_ALIGN(addr);
2214 vma = find_vma_prev(mm, addr, &prev);
2215 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2216 (!vma || addr + len <= vm_start_gap(vma)) &&
2217 (!prev || addr >= vm_end_gap(prev)))
2218 return addr;
2219 }
2220
2221 ///从高向低遍历
2222 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2223 info.length = len;
2224 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2225 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2226 info.align_mask = 0;
2227 info.align_offset = 0;
2228 addr = vm_unmapped_area(&info);
2229
2230 /*
2231 * A failed mmap() very likely causes application failure,
2232 * so fall back to the bottom-up function here. This scenario
2233 * can happen with large stack limits and large mmap()
2234 * allocations.
2235 */
2236 ///若从高低之开始分配失败,从低往高再分配一次
2237 if (offset_in_page(addr)) {
2238 VM_BUG_ON(addr != -ENOMEM);
2239 info.flags = 0;
2240 info.low_limit = TASK_UNMAPPED_BASE;
2241 info.high_limit = mmap_end;
2242 addr = vm_unmapped_area(&info);
2243 }
2244
2245 return addr;
2246 }
2247 #endif
2248
2249 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2250 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2251 unsigned long pgoff, unsigned long flags)
2252 {
2253 unsigned long (*get_area)(struct file *, unsigned long,
2254 unsigned long, unsigned long, unsigned long);
2255
2256 unsigned long error = arch_mmap_check(addr, len, flags);
2257 if (error)
2258 return error;
2259
2260 /* Careful about overflows.. */
2261 if (len > TASK_SIZE)
2262 return -ENOMEM;
2263
2264 get_area = current->mm->get_unmapped_area;
2265 if (file) {
2266 if (file->f_op->get_unmapped_area)
2267 get_area = file->f_op->get_unmapped_area;
2268 } else if (flags & MAP_SHARED) {
2269 /*
2270 * mmap_region() will call shmem_zero_setup() to create a file,
2271 * so use shmem's get_unmapped_area in case it can be huge.
2272 * do_mmap() will clear pgoff, so match alignment.
2273 */
2274 pgoff = 0;
2275 get_area = shmem_get_unmapped_area;
2276 }
2277
2278 addr = get_area(file, addr, len, pgoff, flags);
2279 if (IS_ERR_VALUE(addr))
2280 return addr;
2281
2282 if (addr > TASK_SIZE - len)
2283 return -ENOMEM;
2284 if (offset_in_page(addr))
2285 return -EINVAL;
2286
2287 error = security_mmap_addr(addr);
2288 return error ? error : addr;
2289 }
2290
2291 EXPORT_SYMBOL(get_unmapped_area);
2292
2293 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2294 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2295 {
2296 struct rb_node *rb_node;
2297 struct vm_area_struct *vma;
2298
2299 mmap_assert_locked(mm);
2300 /* Check the cache first. */
2301 vma = vmacache_find(mm, addr); ///存放最近访问过的4个VMA
2302 if (likely(vma))
2303 return vma;
2304
2305 rb_node = mm->mm_rb.rb_node;
2306
2307 while (rb_node) { ///遍历红黑树,查找满足要求的VMA
2308 struct vm_area_struct *tmp;
2309
2310 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2311
2312 if (tmp->vm_end > addr) {
2313 vma = tmp;
2314 if (tmp->vm_start <= addr)
2315 break;
2316 rb_node = rb_node->rb_left;
2317 } else
2318 rb_node = rb_node->rb_right;
2319 }
2320
2321 if (vma)
2322 vmacache_update(addr, vma);
2323 return vma;
2324 }
2325
2326 EXPORT_SYMBOL(find_vma);
2327
2328 /*
2329 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2330 */
2331 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2332 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2333 struct vm_area_struct **pprev)
2334 {
2335 struct vm_area_struct *vma;
2336
2337 vma = find_vma(mm, addr);
2338 if (vma) {
2339 *pprev = vma->vm_prev;
2340 } else {
2341 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2342
2343 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2344 }
2345 return vma;
2346 }
2347
2348 /*
2349 * Verify that the stack growth is acceptable and
2350 * update accounting. This is shared with both the
2351 * grow-up and grow-down cases.
2352 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2353 static int acct_stack_growth(struct vm_area_struct *vma,
2354 unsigned long size, unsigned long grow)
2355 {
2356 struct mm_struct *mm = vma->vm_mm;
2357 unsigned long new_start;
2358
2359 /* address space limit tests */
2360 if (!may_expand_vm(mm, vma->vm_flags, grow))
2361 return -ENOMEM;
2362
2363 /* Stack limit test */
2364 if (size > rlimit(RLIMIT_STACK))
2365 return -ENOMEM;
2366
2367 /* mlock limit tests */
2368 if (vma->vm_flags & VM_LOCKED) {
2369 unsigned long locked;
2370 unsigned long limit;
2371 locked = mm->locked_vm + grow;
2372 limit = rlimit(RLIMIT_MEMLOCK);
2373 limit >>= PAGE_SHIFT;
2374 if (locked > limit && !capable(CAP_IPC_LOCK))
2375 return -ENOMEM;
2376 }
2377
2378 /* Check to ensure the stack will not grow into a hugetlb-only region */
2379 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2380 vma->vm_end - size;
2381 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2382 return -EFAULT;
2383
2384 /*
2385 * Overcommit.. This must be the final test, as it will
2386 * update security statistics.
2387 */
2388 if (security_vm_enough_memory_mm(mm, grow))
2389 return -ENOMEM;
2390
2391 return 0;
2392 }
2393
2394 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2395 /*
2396 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2397 * vma is the last one with address > vma->vm_end. Have to extend vma.
2398 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2399 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2400 {
2401 struct mm_struct *mm = vma->vm_mm;
2402 struct vm_area_struct *next;
2403 unsigned long gap_addr;
2404 int error = 0;
2405
2406 if (!(vma->vm_flags & VM_GROWSUP))
2407 return -EFAULT;
2408
2409 /* Guard against exceeding limits of the address space. */
2410 address &= PAGE_MASK;
2411 if (address >= (TASK_SIZE & PAGE_MASK))
2412 return -ENOMEM;
2413 address += PAGE_SIZE;
2414
2415 /* Enforce stack_guard_gap */
2416 gap_addr = address + stack_guard_gap;
2417
2418 /* Guard against overflow */
2419 if (gap_addr < address || gap_addr > TASK_SIZE)
2420 gap_addr = TASK_SIZE;
2421
2422 next = vma->vm_next;
2423 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2424 if (!(next->vm_flags & VM_GROWSUP))
2425 return -ENOMEM;
2426 /* Check that both stack segments have the same anon_vma? */
2427 }
2428
2429 /* We must make sure the anon_vma is allocated. */
2430 if (unlikely(anon_vma_prepare(vma)))
2431 return -ENOMEM;
2432
2433 /*
2434 * vma->vm_start/vm_end cannot change under us because the caller
2435 * is required to hold the mmap_lock in read mode. We need the
2436 * anon_vma lock to serialize against concurrent expand_stacks.
2437 */
2438 anon_vma_lock_write(vma->anon_vma);
2439
2440 /* Somebody else might have raced and expanded it already */
2441 if (address > vma->vm_end) {
2442 unsigned long size, grow;
2443
2444 size = address - vma->vm_start;
2445 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2446
2447 error = -ENOMEM;
2448 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2449 error = acct_stack_growth(vma, size, grow);
2450 if (!error) {
2451 /*
2452 * vma_gap_update() doesn't support concurrent
2453 * updates, but we only hold a shared mmap_lock
2454 * lock here, so we need to protect against
2455 * concurrent vma expansions.
2456 * anon_vma_lock_write() doesn't help here, as
2457 * we don't guarantee that all growable vmas
2458 * in a mm share the same root anon vma.
2459 * So, we reuse mm->page_table_lock to guard
2460 * against concurrent vma expansions.
2461 */
2462 spin_lock(&mm->page_table_lock);
2463 if (vma->vm_flags & VM_LOCKED)
2464 mm->locked_vm += grow;
2465 vm_stat_account(mm, vma->vm_flags, grow);
2466 anon_vma_interval_tree_pre_update_vma(vma);
2467 vma->vm_end = address;
2468 anon_vma_interval_tree_post_update_vma(vma);
2469 if (vma->vm_next)
2470 vma_gap_update(vma->vm_next);
2471 else
2472 mm->highest_vm_end = vm_end_gap(vma);
2473 spin_unlock(&mm->page_table_lock);
2474
2475 perf_event_mmap(vma);
2476 }
2477 }
2478 }
2479 anon_vma_unlock_write(vma->anon_vma);
2480 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2481 validate_mm(mm);
2482 return error;
2483 }
2484 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2485
2486 /*
2487 * vma is the first one with address < vma->vm_start. Have to extend vma.
2488 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2489 int expand_downwards(struct vm_area_struct *vma,
2490 unsigned long address)
2491 {
2492 struct mm_struct *mm = vma->vm_mm;
2493 struct vm_area_struct *prev;
2494 int error = 0;
2495
2496 address &= PAGE_MASK;
2497 if (address < mmap_min_addr)
2498 return -EPERM;
2499
2500 /* Enforce stack_guard_gap */
2501 prev = vma->vm_prev;
2502 /* Check that both stack segments have the same anon_vma? */
2503 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2504 vma_is_accessible(prev)) {
2505 if (address - prev->vm_end < stack_guard_gap)
2506 return -ENOMEM;
2507 }
2508
2509 /* We must make sure the anon_vma is allocated. */
2510 if (unlikely(anon_vma_prepare(vma)))
2511 return -ENOMEM;
2512
2513 /*
2514 * vma->vm_start/vm_end cannot change under us because the caller
2515 * is required to hold the mmap_lock in read mode. We need the
2516 * anon_vma lock to serialize against concurrent expand_stacks.
2517 */
2518 anon_vma_lock_write(vma->anon_vma);
2519
2520 /* Somebody else might have raced and expanded it already */
2521 if (address < vma->vm_start) {
2522 unsigned long size, grow;
2523
2524 size = vma->vm_end - address;
2525 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2526
2527 error = -ENOMEM;
2528 if (grow <= vma->vm_pgoff) {
2529 error = acct_stack_growth(vma, size, grow);
2530 if (!error) {
2531 /*
2532 * vma_gap_update() doesn't support concurrent
2533 * updates, but we only hold a shared mmap_lock
2534 * lock here, so we need to protect against
2535 * concurrent vma expansions.
2536 * anon_vma_lock_write() doesn't help here, as
2537 * we don't guarantee that all growable vmas
2538 * in a mm share the same root anon vma.
2539 * So, we reuse mm->page_table_lock to guard
2540 * against concurrent vma expansions.
2541 */
2542 spin_lock(&mm->page_table_lock);
2543 if (vma->vm_flags & VM_LOCKED)
2544 mm->locked_vm += grow;
2545 vm_stat_account(mm, vma->vm_flags, grow);
2546 anon_vma_interval_tree_pre_update_vma(vma);
2547 vma->vm_start = address;
2548 vma->vm_pgoff -= grow;
2549 anon_vma_interval_tree_post_update_vma(vma);
2550 vma_gap_update(vma);
2551 spin_unlock(&mm->page_table_lock);
2552
2553 perf_event_mmap(vma);
2554 }
2555 }
2556 }
2557 anon_vma_unlock_write(vma->anon_vma);
2558 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2559 validate_mm(mm);
2560 return error;
2561 }
2562
2563 /* enforced gap between the expanding stack and other mappings. */
2564 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2565
cmdline_parse_stack_guard_gap(char * p)2566 static int __init cmdline_parse_stack_guard_gap(char *p)
2567 {
2568 unsigned long val;
2569 char *endptr;
2570
2571 val = simple_strtoul(p, &endptr, 10);
2572 if (!*endptr)
2573 stack_guard_gap = val << PAGE_SHIFT;
2574
2575 return 0;
2576 }
2577 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2578
2579 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2580 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 return expand_upwards(vma, address);
2583 }
2584
2585 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2586 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2587 {
2588 struct vm_area_struct *vma, *prev;
2589
2590 addr &= PAGE_MASK;
2591 vma = find_vma_prev(mm, addr, &prev);
2592 if (vma && (vma->vm_start <= addr))
2593 return vma;
2594 /* don't alter vm_end if the coredump is running */
2595 if (!prev || expand_stack(prev, addr))
2596 return NULL;
2597 if (prev->vm_flags & VM_LOCKED)
2598 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2599 return prev;
2600 }
2601 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2602 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2603 {
2604 return expand_downwards(vma, address);
2605 }
2606
2607 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2608 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2609 {
2610 struct vm_area_struct *vma;
2611 unsigned long start;
2612
2613 addr &= PAGE_MASK;
2614 vma = find_vma(mm, addr);
2615 if (!vma)
2616 return NULL;
2617 if (vma->vm_start <= addr)
2618 return vma;
2619 if (!(vma->vm_flags & VM_GROWSDOWN))
2620 return NULL;
2621 start = vma->vm_start;
2622 if (expand_stack(vma, addr))
2623 return NULL;
2624 if (vma->vm_flags & VM_LOCKED)
2625 populate_vma_page_range(vma, addr, start, NULL);
2626 return vma;
2627 }
2628 #endif
2629
2630 EXPORT_SYMBOL_GPL(find_extend_vma);
2631
2632 /*
2633 * Ok - we have the memory areas we should free on the vma list,
2634 * so release them, and do the vma updates.
2635 *
2636 * Called with the mm semaphore held.
2637 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2638 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2639 {
2640 unsigned long nr_accounted = 0;
2641
2642 /* Update high watermark before we lower total_vm */
2643 update_hiwater_vm(mm);
2644 do {
2645 long nrpages = vma_pages(vma);
2646
2647 if (vma->vm_flags & VM_ACCOUNT)
2648 nr_accounted += nrpages;
2649 vm_stat_account(mm, vma->vm_flags, -nrpages);
2650 vma = remove_vma(vma);
2651 } while (vma);
2652 vm_unacct_memory(nr_accounted);
2653 validate_mm(mm);
2654 }
2655
2656 /*
2657 * Get rid of page table information in the indicated region.
2658 *
2659 * Called with the mm semaphore held.
2660 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2661 static void unmap_region(struct mm_struct *mm,
2662 struct vm_area_struct *vma, struct vm_area_struct *prev,
2663 unsigned long start, unsigned long end)
2664 {
2665 struct vm_area_struct *next = vma_next(mm, prev);
2666 struct mmu_gather tlb;
2667
2668 lru_add_drain();
2669 tlb_gather_mmu(&tlb, mm);
2670 update_hiwater_rss(mm);
2671 unmap_vmas(&tlb, vma, start, end);
2672 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2673 next ? next->vm_start : USER_PGTABLES_CEILING);
2674 tlb_finish_mmu(&tlb);
2675 }
2676
2677 /*
2678 * Create a list of vma's touched by the unmap, removing them from the mm's
2679 * vma list as we go..
2680 */
2681 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2682 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2683 struct vm_area_struct *prev, unsigned long end)
2684 {
2685 struct vm_area_struct **insertion_point;
2686 struct vm_area_struct *tail_vma = NULL;
2687
2688 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2689 vma->vm_prev = NULL;
2690 do {
2691 vma_rb_erase(vma, &mm->mm_rb);
2692 mm->map_count--;
2693 tail_vma = vma;
2694 vma = vma->vm_next;
2695 } while (vma && vma->vm_start < end);
2696 *insertion_point = vma;
2697 if (vma) {
2698 vma->vm_prev = prev;
2699 vma_gap_update(vma);
2700 } else
2701 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2702 tail_vma->vm_next = NULL;
2703
2704 /* Kill the cache */
2705 vmacache_invalidate(mm);
2706
2707 /*
2708 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2709 * VM_GROWSUP VMA. Such VMAs can change their size under
2710 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2711 */
2712 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2713 return false;
2714 if (prev && (prev->vm_flags & VM_GROWSUP))
2715 return false;
2716 return true;
2717 }
2718
2719 /*
2720 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2721 * has already been checked or doesn't make sense to fail.
2722 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2723 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2724 unsigned long addr, int new_below)
2725 {
2726 struct vm_area_struct *new;
2727 int err;
2728
2729 if (vma->vm_ops && vma->vm_ops->may_split) {
2730 err = vma->vm_ops->may_split(vma, addr);
2731 if (err)
2732 return err;
2733 }
2734
2735 new = vm_area_dup(vma);
2736 if (!new)
2737 return -ENOMEM;
2738
2739 if (new_below)
2740 new->vm_end = addr;
2741 else {
2742 new->vm_start = addr;
2743 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2744 }
2745
2746 err = vma_dup_policy(vma, new);
2747 if (err)
2748 goto out_free_vma;
2749
2750 err = anon_vma_clone(new, vma);
2751 if (err)
2752 goto out_free_mpol;
2753
2754 if (new->vm_file)
2755 get_file(new->vm_file);
2756
2757 if (new->vm_ops && new->vm_ops->open)
2758 new->vm_ops->open(new);
2759
2760 if (new_below)
2761 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2762 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2763 else
2764 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2765
2766 /* Success. */
2767 if (!err)
2768 return 0;
2769
2770 /* Clean everything up if vma_adjust failed. */
2771 if (new->vm_ops && new->vm_ops->close)
2772 new->vm_ops->close(new);
2773 if (new->vm_file)
2774 fput(new->vm_file);
2775 unlink_anon_vmas(new);
2776 out_free_mpol:
2777 mpol_put(vma_policy(new));
2778 out_free_vma:
2779 vm_area_free(new);
2780 return err;
2781 }
2782
2783 /*
2784 * Split a vma into two pieces at address 'addr', a new vma is allocated
2785 * either for the first part or the tail.
2786 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2787 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2788 unsigned long addr, int new_below)
2789 {
2790 if (mm->map_count >= sysctl_max_map_count)
2791 return -ENOMEM;
2792
2793 return __split_vma(mm, vma, addr, new_below);
2794 }
2795
2796 static inline void
unlock_range(struct vm_area_struct * start,unsigned long limit)2797 unlock_range(struct vm_area_struct *start, unsigned long limit)
2798 {
2799 struct mm_struct *mm = start->vm_mm;
2800 struct vm_area_struct *tmp = start;
2801
2802 while (tmp && tmp->vm_start < limit) {
2803 if (tmp->vm_flags & VM_LOCKED) {
2804 mm->locked_vm -= vma_pages(tmp);
2805 munlock_vma_pages_all(tmp);
2806 }
2807
2808 tmp = tmp->vm_next;
2809 }
2810 }
2811
2812 /* Munmap is split into 2 main parts -- this part which finds
2813 * what needs doing, and the areas themselves, which do the
2814 * work. This now handles partial unmappings.
2815 * Jeremy Fitzhardinge <jeremy@goop.org>
2816 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2817 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2818 struct list_head *uf, bool downgrade)
2819 {
2820 unsigned long end;
2821 struct vm_area_struct *vma, *prev, *last;
2822
2823 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2824 return -EINVAL;
2825
2826 len = PAGE_ALIGN(len);
2827 end = start + len;
2828 if (len == 0)
2829 return -EINVAL;
2830
2831 /*
2832 * arch_unmap() might do unmaps itself. It must be called
2833 * and finish any rbtree manipulation before this code
2834 * runs and also starts to manipulate the rbtree.
2835 */
2836 arch_unmap(mm, start, end);
2837
2838 /* Find the first overlapping VMA where start < vma->vm_end */
2839 vma = find_vma_intersection(mm, start, end);
2840 if (!vma)
2841 return 0;
2842 prev = vma->vm_prev;
2843
2844 /*
2845 * If we need to split any vma, do it now to save pain later.
2846 *
2847 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2848 * unmapped vm_area_struct will remain in use: so lower split_vma
2849 * places tmp vma above, and higher split_vma places tmp vma below.
2850 */
2851 if (start > vma->vm_start) {
2852 int error;
2853
2854 /*
2855 * Make sure that map_count on return from munmap() will
2856 * not exceed its limit; but let map_count go just above
2857 * its limit temporarily, to help free resources as expected.
2858 */
2859 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2860 return -ENOMEM;
2861
2862 error = __split_vma(mm, vma, start, 0);
2863 if (error)
2864 return error;
2865 prev = vma;
2866 }
2867
2868 /* Does it split the last one? */
2869 last = find_vma(mm, end);
2870 if (last && end > last->vm_start) {
2871 int error = __split_vma(mm, last, end, 1);
2872 if (error)
2873 return error;
2874 }
2875 vma = vma_next(mm, prev);
2876
2877 if (unlikely(uf)) {
2878 /*
2879 * If userfaultfd_unmap_prep returns an error the vmas
2880 * will remain split, but userland will get a
2881 * highly unexpected error anyway. This is no
2882 * different than the case where the first of the two
2883 * __split_vma fails, but we don't undo the first
2884 * split, despite we could. This is unlikely enough
2885 * failure that it's not worth optimizing it for.
2886 */
2887 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2888 if (error)
2889 return error;
2890 }
2891
2892 /*
2893 * unlock any mlock()ed ranges before detaching vmas
2894 */
2895 if (mm->locked_vm)
2896 unlock_range(vma, end);
2897
2898 /* Detach vmas from rbtree */
2899 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2900 downgrade = false;
2901
2902 if (downgrade)
2903 mmap_write_downgrade(mm);
2904
2905 unmap_region(mm, vma, prev, start, end);
2906
2907 /* Fix up all other VM information */
2908 remove_vma_list(mm, vma);
2909
2910 return downgrade ? 1 : 0;
2911 }
2912
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2913 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2914 struct list_head *uf)
2915 {
2916 return __do_munmap(mm, start, len, uf, false);
2917 }
2918
__vm_munmap(unsigned long start,size_t len,bool downgrade)2919 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2920 {
2921 int ret;
2922 struct mm_struct *mm = current->mm;
2923 LIST_HEAD(uf);
2924
2925 if (mmap_write_lock_killable(mm))
2926 return -EINTR;
2927
2928 ret = __do_munmap(mm, start, len, &uf, downgrade);
2929 /*
2930 * Returning 1 indicates mmap_lock is downgraded.
2931 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2932 * it to 0 before return.
2933 */
2934 if (ret == 1) {
2935 mmap_read_unlock(mm);
2936 ret = 0;
2937 } else
2938 mmap_write_unlock(mm);
2939
2940 userfaultfd_unmap_complete(mm, &uf);
2941 return ret;
2942 }
2943
vm_munmap(unsigned long start,size_t len)2944 int vm_munmap(unsigned long start, size_t len)
2945 {
2946 return __vm_munmap(start, len, false);
2947 }
2948 EXPORT_SYMBOL(vm_munmap);
2949
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2951 {
2952 addr = untagged_addr(addr);
2953 profile_munmap(addr);
2954 return __vm_munmap(addr, len, true);
2955 }
2956
2957
2958 /*
2959 * Emulation of deprecated remap_file_pages() syscall.
2960 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2961 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2962 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2963 {
2964
2965 struct mm_struct *mm = current->mm;
2966 struct vm_area_struct *vma;
2967 unsigned long populate = 0;
2968 unsigned long ret = -EINVAL;
2969 struct file *file;
2970
2971 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2972 current->comm, current->pid);
2973
2974 if (prot)
2975 return ret;
2976 start = start & PAGE_MASK;
2977 size = size & PAGE_MASK;
2978
2979 if (start + size <= start)
2980 return ret;
2981
2982 /* Does pgoff wrap? */
2983 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2984 return ret;
2985
2986 if (mmap_write_lock_killable(mm))
2987 return -EINTR;
2988
2989 vma = vma_lookup(mm, start);
2990
2991 if (!vma || !(vma->vm_flags & VM_SHARED))
2992 goto out;
2993
2994 if (start + size > vma->vm_end) {
2995 struct vm_area_struct *next;
2996
2997 for (next = vma->vm_next; next; next = next->vm_next) {
2998 /* hole between vmas ? */
2999 if (next->vm_start != next->vm_prev->vm_end)
3000 goto out;
3001
3002 if (next->vm_file != vma->vm_file)
3003 goto out;
3004
3005 if (next->vm_flags != vma->vm_flags)
3006 goto out;
3007
3008 if (start + size <= next->vm_end)
3009 break;
3010 }
3011
3012 if (!next)
3013 goto out;
3014 }
3015
3016 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3017 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3018 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3019
3020 flags &= MAP_NONBLOCK;
3021 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3022 if (vma->vm_flags & VM_LOCKED)
3023 flags |= MAP_LOCKED;
3024
3025 file = get_file(vma->vm_file);
3026 ret = do_mmap(vma->vm_file, start, size,
3027 prot, flags, pgoff, &populate, NULL);
3028 fput(file);
3029 out:
3030 mmap_write_unlock(mm);
3031 if (populate)
3032 mm_populate(ret, populate);
3033 if (!IS_ERR_VALUE(ret))
3034 ret = 0;
3035 return ret;
3036 }
3037
3038 /*
3039 * this is really a simplified "do_mmap". it only handles
3040 * anonymous maps. eventually we may be able to do some
3041 * brk-specific accounting here.
3042 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3043 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3044 {
3045 struct mm_struct *mm = current->mm;
3046 struct vm_area_struct *vma, *prev;
3047 struct rb_node **rb_link, *rb_parent;
3048 pgoff_t pgoff = addr >> PAGE_SHIFT;
3049 int error;
3050 unsigned long mapped_addr;
3051
3052 /* Until we need other flags, refuse anything except VM_EXEC. */
3053 if ((flags & (~VM_EXEC)) != 0)
3054 return -EINVAL;
3055 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; ///默认属性,可读写
3056
3057 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); ///返回未使用过的,未映射的线性地址区间的,起始地址
3058 if (IS_ERR_VALUE(mapped_addr))
3059 return mapped_addr;
3060
3061 error = mlock_future_check(mm, mm->def_flags, len);
3062 if (error)
3063 return error;
3064
3065 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3066 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf)) ///寻找适合插入的红黑树节点
3067 return -ENOMEM;
3068
3069 /* Check against address space limits *after* clearing old maps... */
3070 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3071 return -ENOMEM;
3072
3073 if (mm->map_count > sysctl_max_map_count)
3074 return -ENOMEM;
3075
3076 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3077 return -ENOMEM;
3078
3079 /* Can we just expand an old private anonymous mapping? */ ///检查是否能合并addr到附近的vma,若不能,只能新建一个vma
3080 vma = vma_merge(mm, prev, addr, addr + len, flags,
3081 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3082 if (vma)
3083 goto out;
3084
3085 /*
3086 * create a vma struct for an anonymous mapping
3087 */
3088 vma = vm_area_alloc(mm);
3089 if (!vma) {
3090 vm_unacct_memory(len >> PAGE_SHIFT);
3091 return -ENOMEM;
3092 }
3093
3094 vma_set_anonymous(vma);
3095 vma->vm_start = addr;
3096 vma->vm_end = addr + len;
3097 vma->vm_pgoff = pgoff;
3098 vma->vm_flags = flags;
3099 vma->vm_page_prot = vm_get_page_prot(flags);
3100 vma_link(mm, vma, prev, rb_link, rb_parent); ///新vma添加到mmap链表和红黑树
3101 out:
3102 perf_event_mmap(vma);
3103 mm->total_vm += len >> PAGE_SHIFT;
3104 mm->data_vm += len >> PAGE_SHIFT;
3105 if (flags & VM_LOCKED)
3106 mm->locked_vm += (len >> PAGE_SHIFT);
3107 vma->vm_flags |= VM_SOFTDIRTY;
3108 return 0;
3109 }
3110
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3111 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3112 {
3113 struct mm_struct *mm = current->mm;
3114 unsigned long len;
3115 int ret;
3116 bool populate;
3117 LIST_HEAD(uf);
3118
3119 len = PAGE_ALIGN(request);
3120 if (len < request)
3121 return -ENOMEM;
3122 if (!len)
3123 return 0;
3124
3125 if (mmap_write_lock_killable(mm))
3126 return -EINTR;
3127
3128 ret = do_brk_flags(addr, len, flags, &uf);
3129 populate = ((mm->def_flags & VM_LOCKED) != 0);
3130 mmap_write_unlock(mm);
3131 userfaultfd_unmap_complete(mm, &uf);
3132 if (populate && !ret)
3133 mm_populate(addr, len);
3134 return ret;
3135 }
3136 EXPORT_SYMBOL(vm_brk_flags);
3137
vm_brk(unsigned long addr,unsigned long len)3138 int vm_brk(unsigned long addr, unsigned long len)
3139 {
3140 return vm_brk_flags(addr, len, 0);
3141 }
3142 EXPORT_SYMBOL(vm_brk);
3143
3144 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3145 void exit_mmap(struct mm_struct *mm)
3146 {
3147 struct mmu_gather tlb;
3148 struct vm_area_struct *vma;
3149 unsigned long nr_accounted = 0;
3150
3151 /* mm's last user has gone, and its about to be pulled down */
3152 mmu_notifier_release(mm);
3153
3154 if (unlikely(mm_is_oom_victim(mm))) {
3155 /*
3156 * Manually reap the mm to free as much memory as possible.
3157 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3158 * this mm from further consideration. Taking mm->mmap_lock for
3159 * write after setting MMF_OOM_SKIP will guarantee that the oom
3160 * reaper will not run on this mm again after mmap_lock is
3161 * dropped.
3162 *
3163 * Nothing can be holding mm->mmap_lock here and the above call
3164 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3165 * __oom_reap_task_mm() will not block.
3166 *
3167 * This needs to be done before calling munlock_vma_pages_all(),
3168 * which clears VM_LOCKED, otherwise the oom reaper cannot
3169 * reliably test it.
3170 */
3171 (void)__oom_reap_task_mm(mm);
3172
3173 set_bit(MMF_OOM_SKIP, &mm->flags);
3174 mmap_write_lock(mm);
3175 mmap_write_unlock(mm);
3176 }
3177
3178 if (mm->locked_vm)
3179 unlock_range(mm->mmap, ULONG_MAX);
3180
3181 arch_exit_mmap(mm);
3182
3183 vma = mm->mmap;
3184 if (!vma) /* Can happen if dup_mmap() received an OOM */
3185 return;
3186
3187 lru_add_drain();
3188 flush_cache_mm(mm);
3189 tlb_gather_mmu_fullmm(&tlb, mm);
3190 /* update_hiwater_rss(mm) here? but nobody should be looking */
3191 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3192 unmap_vmas(&tlb, vma, 0, -1);
3193 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3194 tlb_finish_mmu(&tlb);
3195
3196 /*
3197 * Walk the list again, actually closing and freeing it,
3198 * with preemption enabled, without holding any MM locks.
3199 */
3200 while (vma) {
3201 if (vma->vm_flags & VM_ACCOUNT)
3202 nr_accounted += vma_pages(vma);
3203 vma = remove_vma(vma);
3204 cond_resched();
3205 }
3206 vm_unacct_memory(nr_accounted);
3207 }
3208
3209 /* Insert vm structure into process list sorted by address
3210 * and into the inode's i_mmap tree. If vm_file is non-NULL
3211 * then i_mmap_rwsem is taken here.
3212 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3213 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3214 {
3215 struct vm_area_struct *prev;
3216 struct rb_node **rb_link, *rb_parent;
3217
3218 ///查找要插入的位置
3219 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3220 &prev, &rb_link, &rb_parent))
3221 return -ENOMEM;
3222 if ((vma->vm_flags & VM_ACCOUNT) &&
3223 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3224 return -ENOMEM;
3225
3226 /*
3227 * The vm_pgoff of a purely anonymous vma should be irrelevant
3228 * until its first write fault, when page's anon_vma and index
3229 * are set. But now set the vm_pgoff it will almost certainly
3230 * end up with (unless mremap moves it elsewhere before that
3231 * first wfault), so /proc/pid/maps tells a consistent story.
3232 *
3233 * By setting it to reflect the virtual start address of the
3234 * vma, merges and splits can happen in a seamless way, just
3235 * using the existing file pgoff checks and manipulations.
3236 * Similarly in do_mmap and in do_brk_flags.
3237 */
3238 if (vma_is_anonymous(vma)) { ///判断是否为匿名页
3239 BUG_ON(vma->anon_vma);
3240 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3241 }
3242
3243 vma_link(mm, vma, prev, rb_link, rb_parent); //将vma插入mm的vma链表中
3244 return 0;
3245 }
3246
3247 /*
3248 * Copy the vma structure to a new location in the same mm,
3249 * prior to moving page table entries, to effect an mremap move.
3250 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3251 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3252 unsigned long addr, unsigned long len, pgoff_t pgoff,
3253 bool *need_rmap_locks)
3254 {
3255 struct vm_area_struct *vma = *vmap;
3256 unsigned long vma_start = vma->vm_start;
3257 struct mm_struct *mm = vma->vm_mm;
3258 struct vm_area_struct *new_vma, *prev;
3259 struct rb_node **rb_link, *rb_parent;
3260 bool faulted_in_anon_vma = true;
3261
3262 /*
3263 * If anonymous vma has not yet been faulted, update new pgoff
3264 * to match new location, to increase its chance of merging.
3265 */
3266 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3267 pgoff = addr >> PAGE_SHIFT;
3268 faulted_in_anon_vma = false;
3269 }
3270
3271 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3272 return NULL; /* should never get here */
3273 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3274 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3275 vma->vm_userfaultfd_ctx);
3276 if (new_vma) {
3277 /*
3278 * Source vma may have been merged into new_vma
3279 */
3280 if (unlikely(vma_start >= new_vma->vm_start &&
3281 vma_start < new_vma->vm_end)) {
3282 /*
3283 * The only way we can get a vma_merge with
3284 * self during an mremap is if the vma hasn't
3285 * been faulted in yet and we were allowed to
3286 * reset the dst vma->vm_pgoff to the
3287 * destination address of the mremap to allow
3288 * the merge to happen. mremap must change the
3289 * vm_pgoff linearity between src and dst vmas
3290 * (in turn preventing a vma_merge) to be
3291 * safe. It is only safe to keep the vm_pgoff
3292 * linear if there are no pages mapped yet.
3293 */
3294 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3295 *vmap = vma = new_vma;
3296 }
3297 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3298 } else {
3299 new_vma = vm_area_dup(vma);
3300 if (!new_vma)
3301 goto out;
3302 new_vma->vm_start = addr;
3303 new_vma->vm_end = addr + len;
3304 new_vma->vm_pgoff = pgoff;
3305 if (vma_dup_policy(vma, new_vma))
3306 goto out_free_vma;
3307 if (anon_vma_clone(new_vma, vma))
3308 goto out_free_mempol;
3309 if (new_vma->vm_file)
3310 get_file(new_vma->vm_file);
3311 if (new_vma->vm_ops && new_vma->vm_ops->open)
3312 new_vma->vm_ops->open(new_vma);
3313 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3314 *need_rmap_locks = false;
3315 }
3316 return new_vma;
3317
3318 out_free_mempol:
3319 mpol_put(vma_policy(new_vma));
3320 out_free_vma:
3321 vm_area_free(new_vma);
3322 out:
3323 return NULL;
3324 }
3325
3326 /*
3327 * Return true if the calling process may expand its vm space by the passed
3328 * number of pages
3329 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3330 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3331 {
3332 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3333 return false;
3334
3335 if (is_data_mapping(flags) &&
3336 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3337 /* Workaround for Valgrind */
3338 if (rlimit(RLIMIT_DATA) == 0 &&
3339 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3340 return true;
3341
3342 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3343 current->comm, current->pid,
3344 (mm->data_vm + npages) << PAGE_SHIFT,
3345 rlimit(RLIMIT_DATA),
3346 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3347
3348 if (!ignore_rlimit_data)
3349 return false;
3350 }
3351
3352 return true;
3353 }
3354
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3355 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3356 {
3357 mm->total_vm += npages;
3358
3359 if (is_exec_mapping(flags))
3360 mm->exec_vm += npages;
3361 else if (is_stack_mapping(flags))
3362 mm->stack_vm += npages;
3363 else if (is_data_mapping(flags))
3364 mm->data_vm += npages;
3365 }
3366
3367 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3368
3369 /*
3370 * Having a close hook prevents vma merging regardless of flags.
3371 */
special_mapping_close(struct vm_area_struct * vma)3372 static void special_mapping_close(struct vm_area_struct *vma)
3373 {
3374 }
3375
special_mapping_name(struct vm_area_struct * vma)3376 static const char *special_mapping_name(struct vm_area_struct *vma)
3377 {
3378 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3379 }
3380
special_mapping_mremap(struct vm_area_struct * new_vma)3381 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3382 {
3383 struct vm_special_mapping *sm = new_vma->vm_private_data;
3384
3385 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3386 return -EFAULT;
3387
3388 if (sm->mremap)
3389 return sm->mremap(sm, new_vma);
3390
3391 return 0;
3392 }
3393
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3394 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3395 {
3396 /*
3397 * Forbid splitting special mappings - kernel has expectations over
3398 * the number of pages in mapping. Together with VM_DONTEXPAND
3399 * the size of vma should stay the same over the special mapping's
3400 * lifetime.
3401 */
3402 return -EINVAL;
3403 }
3404
3405 static const struct vm_operations_struct special_mapping_vmops = {
3406 .close = special_mapping_close,
3407 .fault = special_mapping_fault,
3408 .mremap = special_mapping_mremap,
3409 .name = special_mapping_name,
3410 /* vDSO code relies that VVAR can't be accessed remotely */
3411 .access = NULL,
3412 .may_split = special_mapping_split,
3413 };
3414
3415 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3416 .close = special_mapping_close,
3417 .fault = special_mapping_fault,
3418 };
3419
special_mapping_fault(struct vm_fault * vmf)3420 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3421 {
3422 struct vm_area_struct *vma = vmf->vma;
3423 pgoff_t pgoff;
3424 struct page **pages;
3425
3426 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3427 pages = vma->vm_private_data;
3428 } else {
3429 struct vm_special_mapping *sm = vma->vm_private_data;
3430
3431 if (sm->fault)
3432 return sm->fault(sm, vmf->vma, vmf);
3433
3434 pages = sm->pages;
3435 }
3436
3437 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3438 pgoff--;
3439
3440 if (*pages) {
3441 struct page *page = *pages;
3442 get_page(page);
3443 vmf->page = page;
3444 return 0;
3445 }
3446
3447 return VM_FAULT_SIGBUS;
3448 }
3449
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3450 static struct vm_area_struct *__install_special_mapping(
3451 struct mm_struct *mm,
3452 unsigned long addr, unsigned long len,
3453 unsigned long vm_flags, void *priv,
3454 const struct vm_operations_struct *ops)
3455 {
3456 int ret;
3457 struct vm_area_struct *vma;
3458
3459 vma = vm_area_alloc(mm);
3460 if (unlikely(vma == NULL))
3461 return ERR_PTR(-ENOMEM);
3462
3463 vma->vm_start = addr;
3464 vma->vm_end = addr + len;
3465
3466 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3467 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3468
3469 vma->vm_ops = ops;
3470 vma->vm_private_data = priv;
3471
3472 ret = insert_vm_struct(mm, vma);
3473 if (ret)
3474 goto out;
3475
3476 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3477
3478 perf_event_mmap(vma);
3479
3480 return vma;
3481
3482 out:
3483 vm_area_free(vma);
3484 return ERR_PTR(ret);
3485 }
3486
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3487 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3488 const struct vm_special_mapping *sm)
3489 {
3490 return vma->vm_private_data == sm &&
3491 (vma->vm_ops == &special_mapping_vmops ||
3492 vma->vm_ops == &legacy_special_mapping_vmops);
3493 }
3494
3495 /*
3496 * Called with mm->mmap_lock held for writing.
3497 * Insert a new vma covering the given region, with the given flags.
3498 * Its pages are supplied by the given array of struct page *.
3499 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3500 * The region past the last page supplied will always produce SIGBUS.
3501 * The array pointer and the pages it points to are assumed to stay alive
3502 * for as long as this mapping might exist.
3503 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3504 struct vm_area_struct *_install_special_mapping(
3505 struct mm_struct *mm,
3506 unsigned long addr, unsigned long len,
3507 unsigned long vm_flags, const struct vm_special_mapping *spec)
3508 {
3509 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3510 &special_mapping_vmops);
3511 }
3512
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3513 int install_special_mapping(struct mm_struct *mm,
3514 unsigned long addr, unsigned long len,
3515 unsigned long vm_flags, struct page **pages)
3516 {
3517 struct vm_area_struct *vma = __install_special_mapping(
3518 mm, addr, len, vm_flags, (void *)pages,
3519 &legacy_special_mapping_vmops);
3520
3521 return PTR_ERR_OR_ZERO(vma);
3522 }
3523
3524 static DEFINE_MUTEX(mm_all_locks_mutex);
3525
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3526 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3527 {
3528 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3529 /*
3530 * The LSB of head.next can't change from under us
3531 * because we hold the mm_all_locks_mutex.
3532 */
3533 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3534 /*
3535 * We can safely modify head.next after taking the
3536 * anon_vma->root->rwsem. If some other vma in this mm shares
3537 * the same anon_vma we won't take it again.
3538 *
3539 * No need of atomic instructions here, head.next
3540 * can't change from under us thanks to the
3541 * anon_vma->root->rwsem.
3542 */
3543 if (__test_and_set_bit(0, (unsigned long *)
3544 &anon_vma->root->rb_root.rb_root.rb_node))
3545 BUG();
3546 }
3547 }
3548
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3549 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3550 {
3551 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3552 /*
3553 * AS_MM_ALL_LOCKS can't change from under us because
3554 * we hold the mm_all_locks_mutex.
3555 *
3556 * Operations on ->flags have to be atomic because
3557 * even if AS_MM_ALL_LOCKS is stable thanks to the
3558 * mm_all_locks_mutex, there may be other cpus
3559 * changing other bitflags in parallel to us.
3560 */
3561 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3562 BUG();
3563 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3564 }
3565 }
3566
3567 /*
3568 * This operation locks against the VM for all pte/vma/mm related
3569 * operations that could ever happen on a certain mm. This includes
3570 * vmtruncate, try_to_unmap, and all page faults.
3571 *
3572 * The caller must take the mmap_lock in write mode before calling
3573 * mm_take_all_locks(). The caller isn't allowed to release the
3574 * mmap_lock until mm_drop_all_locks() returns.
3575 *
3576 * mmap_lock in write mode is required in order to block all operations
3577 * that could modify pagetables and free pages without need of
3578 * altering the vma layout. It's also needed in write mode to avoid new
3579 * anon_vmas to be associated with existing vmas.
3580 *
3581 * A single task can't take more than one mm_take_all_locks() in a row
3582 * or it would deadlock.
3583 *
3584 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3585 * mapping->flags avoid to take the same lock twice, if more than one
3586 * vma in this mm is backed by the same anon_vma or address_space.
3587 *
3588 * We take locks in following order, accordingly to comment at beginning
3589 * of mm/rmap.c:
3590 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3591 * hugetlb mapping);
3592 * - all i_mmap_rwsem locks;
3593 * - all anon_vma->rwseml
3594 *
3595 * We can take all locks within these types randomly because the VM code
3596 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3597 * mm_all_locks_mutex.
3598 *
3599 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3600 * that may have to take thousand of locks.
3601 *
3602 * mm_take_all_locks() can fail if it's interrupted by signals.
3603 */
mm_take_all_locks(struct mm_struct * mm)3604 int mm_take_all_locks(struct mm_struct *mm)
3605 {
3606 struct vm_area_struct *vma;
3607 struct anon_vma_chain *avc;
3608
3609 BUG_ON(mmap_read_trylock(mm));
3610
3611 mutex_lock(&mm_all_locks_mutex);
3612
3613 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3614 if (signal_pending(current))
3615 goto out_unlock;
3616 if (vma->vm_file && vma->vm_file->f_mapping &&
3617 is_vm_hugetlb_page(vma))
3618 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3619 }
3620
3621 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3622 if (signal_pending(current))
3623 goto out_unlock;
3624 if (vma->vm_file && vma->vm_file->f_mapping &&
3625 !is_vm_hugetlb_page(vma))
3626 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3627 }
3628
3629 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3630 if (signal_pending(current))
3631 goto out_unlock;
3632 if (vma->anon_vma)
3633 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3634 vm_lock_anon_vma(mm, avc->anon_vma);
3635 }
3636
3637 return 0;
3638
3639 out_unlock:
3640 mm_drop_all_locks(mm);
3641 return -EINTR;
3642 }
3643
vm_unlock_anon_vma(struct anon_vma * anon_vma)3644 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3645 {
3646 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3647 /*
3648 * The LSB of head.next can't change to 0 from under
3649 * us because we hold the mm_all_locks_mutex.
3650 *
3651 * We must however clear the bitflag before unlocking
3652 * the vma so the users using the anon_vma->rb_root will
3653 * never see our bitflag.
3654 *
3655 * No need of atomic instructions here, head.next
3656 * can't change from under us until we release the
3657 * anon_vma->root->rwsem.
3658 */
3659 if (!__test_and_clear_bit(0, (unsigned long *)
3660 &anon_vma->root->rb_root.rb_root.rb_node))
3661 BUG();
3662 anon_vma_unlock_write(anon_vma);
3663 }
3664 }
3665
vm_unlock_mapping(struct address_space * mapping)3666 static void vm_unlock_mapping(struct address_space *mapping)
3667 {
3668 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3669 /*
3670 * AS_MM_ALL_LOCKS can't change to 0 from under us
3671 * because we hold the mm_all_locks_mutex.
3672 */
3673 i_mmap_unlock_write(mapping);
3674 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3675 &mapping->flags))
3676 BUG();
3677 }
3678 }
3679
3680 /*
3681 * The mmap_lock cannot be released by the caller until
3682 * mm_drop_all_locks() returns.
3683 */
mm_drop_all_locks(struct mm_struct * mm)3684 void mm_drop_all_locks(struct mm_struct *mm)
3685 {
3686 struct vm_area_struct *vma;
3687 struct anon_vma_chain *avc;
3688
3689 BUG_ON(mmap_read_trylock(mm));
3690 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3691
3692 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3693 if (vma->anon_vma)
3694 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3695 vm_unlock_anon_vma(avc->anon_vma);
3696 if (vma->vm_file && vma->vm_file->f_mapping)
3697 vm_unlock_mapping(vma->vm_file->f_mapping);
3698 }
3699
3700 mutex_unlock(&mm_all_locks_mutex);
3701 }
3702
3703 /*
3704 * initialise the percpu counter for VM
3705 */
mmap_init(void)3706 void __init mmap_init(void)
3707 {
3708 int ret;
3709
3710 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3711 VM_BUG_ON(ret);
3712 }
3713
3714 /*
3715 * Initialise sysctl_user_reserve_kbytes.
3716 *
3717 * This is intended to prevent a user from starting a single memory hogging
3718 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3719 * mode.
3720 *
3721 * The default value is min(3% of free memory, 128MB)
3722 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3723 */
init_user_reserve(void)3724 static int init_user_reserve(void)
3725 {
3726 unsigned long free_kbytes;
3727
3728 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3729
3730 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3731 return 0;
3732 }
3733 subsys_initcall(init_user_reserve);
3734
3735 /*
3736 * Initialise sysctl_admin_reserve_kbytes.
3737 *
3738 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3739 * to log in and kill a memory hogging process.
3740 *
3741 * Systems with more than 256MB will reserve 8MB, enough to recover
3742 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3743 * only reserve 3% of free pages by default.
3744 */
init_admin_reserve(void)3745 static int init_admin_reserve(void)
3746 {
3747 unsigned long free_kbytes;
3748
3749 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3750
3751 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3752 return 0;
3753 }
3754 subsys_initcall(init_admin_reserve);
3755
3756 /*
3757 * Reinititalise user and admin reserves if memory is added or removed.
3758 *
3759 * The default user reserve max is 128MB, and the default max for the
3760 * admin reserve is 8MB. These are usually, but not always, enough to
3761 * enable recovery from a memory hogging process using login/sshd, a shell,
3762 * and tools like top. It may make sense to increase or even disable the
3763 * reserve depending on the existence of swap or variations in the recovery
3764 * tools. So, the admin may have changed them.
3765 *
3766 * If memory is added and the reserves have been eliminated or increased above
3767 * the default max, then we'll trust the admin.
3768 *
3769 * If memory is removed and there isn't enough free memory, then we
3770 * need to reset the reserves.
3771 *
3772 * Otherwise keep the reserve set by the admin.
3773 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3774 static int reserve_mem_notifier(struct notifier_block *nb,
3775 unsigned long action, void *data)
3776 {
3777 unsigned long tmp, free_kbytes;
3778
3779 switch (action) {
3780 case MEM_ONLINE:
3781 /* Default max is 128MB. Leave alone if modified by operator. */
3782 tmp = sysctl_user_reserve_kbytes;
3783 if (0 < tmp && tmp < (1UL << 17))
3784 init_user_reserve();
3785
3786 /* Default max is 8MB. Leave alone if modified by operator. */
3787 tmp = sysctl_admin_reserve_kbytes;
3788 if (0 < tmp && tmp < (1UL << 13))
3789 init_admin_reserve();
3790
3791 break;
3792 case MEM_OFFLINE:
3793 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3794
3795 if (sysctl_user_reserve_kbytes > free_kbytes) {
3796 init_user_reserve();
3797 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3798 sysctl_user_reserve_kbytes);
3799 }
3800
3801 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3802 init_admin_reserve();
3803 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3804 sysctl_admin_reserve_kbytes);
3805 }
3806 break;
3807 default:
3808 break;
3809 }
3810 return NOTIFY_OK;
3811 }
3812
3813 static struct notifier_block reserve_mem_nb = {
3814 .notifier_call = reserve_mem_notifier,
3815 };
3816
init_reserve_notifier(void)3817 static int __meminit init_reserve_notifier(void)
3818 {
3819 if (register_hotmemory_notifier(&reserve_mem_nb))
3820 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3821
3822 return 0;
3823 }
3824 subsys_initcall(init_reserve_notifier);
3825