1 /* src/p80211/p80211knetdev.c 2 * 3 * Linux Kernel net device interface 4 * 5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved. 6 * -------------------------------------------------------------------- 7 * 8 * linux-wlan 9 * 10 * The contents of this file are subject to the Mozilla Public 11 * License Version 1.1 (the "License"); you may not use this file 12 * except in compliance with the License. You may obtain a copy of 13 * the License at http://www.mozilla.org/MPL/ 14 * 15 * Software distributed under the License is distributed on an "AS 16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or 17 * implied. See the License for the specific language governing 18 * rights and limitations under the License. 19 * 20 * Alternatively, the contents of this file may be used under the 21 * terms of the GNU Public License version 2 (the "GPL"), in which 22 * case the provisions of the GPL are applicable instead of the 23 * above. If you wish to allow the use of your version of this file 24 * only under the terms of the GPL and not to allow others to use 25 * your version of this file under the MPL, indicate your decision 26 * by deleting the provisions above and replace them with the notice 27 * and other provisions required by the GPL. If you do not delete 28 * the provisions above, a recipient may use your version of this 29 * file under either the MPL or the GPL. 30 * 31 * -------------------------------------------------------------------- 32 * 33 * Inquiries regarding the linux-wlan Open Source project can be 34 * made directly to: 35 * 36 * AbsoluteValue Systems Inc. 37 * info@linux-wlan.com 38 * http://www.linux-wlan.com 39 * 40 * -------------------------------------------------------------------- 41 * 42 * Portions of the development of this software were funded by 43 * Intersil Corporation as part of PRISM(R) chipset product development. 44 * 45 * -------------------------------------------------------------------- 46 * 47 * The functions required for a Linux network device are defined here. 48 * 49 * -------------------------------------------------------------------- 50 */ 51 52 #include <linux/module.h> 53 #include <linux/kernel.h> 54 #include <linux/sched.h> 55 #include <linux/types.h> 56 #include <linux/skbuff.h> 57 #include <linux/slab.h> 58 #include <linux/proc_fs.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> 61 #include <linux/kmod.h> 62 #include <linux/if_arp.h> 63 #include <linux/wireless.h> 64 #include <linux/sockios.h> 65 #include <linux/etherdevice.h> 66 #include <linux/if_ether.h> 67 #include <linux/byteorder/generic.h> 68 #include <linux/bitops.h> 69 #include <linux/uaccess.h> 70 #include <asm/byteorder.h> 71 72 #ifdef SIOCETHTOOL 73 #include <linux/ethtool.h> 74 #endif 75 76 #include <net/iw_handler.h> 77 #include <net/net_namespace.h> 78 #include <net/cfg80211.h> 79 80 #include "p80211types.h" 81 #include "p80211hdr.h" 82 #include "p80211conv.h" 83 #include "p80211mgmt.h" 84 #include "p80211msg.h" 85 #include "p80211netdev.h" 86 #include "p80211ioctl.h" 87 #include "p80211req.h" 88 #include "p80211metastruct.h" 89 #include "p80211metadef.h" 90 91 #include "cfg80211.c" 92 93 /* Support functions */ 94 static void p80211netdev_rx_bh(unsigned long arg); 95 96 /* netdevice method functions */ 97 static int p80211knetdev_init(netdevice_t *netdev); 98 static struct net_device_stats *p80211knetdev_get_stats(netdevice_t *netdev); 99 static int p80211knetdev_open(netdevice_t *netdev); 100 static int p80211knetdev_stop(netdevice_t *netdev); 101 static int p80211knetdev_hard_start_xmit(struct sk_buff *skb, 102 netdevice_t *netdev); 103 static void p80211knetdev_set_multicast_list(netdevice_t *dev); 104 static int p80211knetdev_do_ioctl(netdevice_t *dev, struct ifreq *ifr, 105 int cmd); 106 static int p80211knetdev_set_mac_address(netdevice_t *dev, void *addr); 107 static void p80211knetdev_tx_timeout(netdevice_t *netdev); 108 static int p80211_rx_typedrop(wlandevice_t *wlandev, u16 fc); 109 110 int wlan_watchdog = 5000; 111 module_param(wlan_watchdog, int, 0644); 112 MODULE_PARM_DESC(wlan_watchdog, "transmit timeout in milliseconds"); 113 114 int wlan_wext_write = 1; 115 module_param(wlan_wext_write, int, 0644); 116 MODULE_PARM_DESC(wlan_wext_write, "enable write wireless extensions"); 117 118 /*---------------------------------------------------------------- 119 * p80211knetdev_init 120 * 121 * Init method for a Linux netdevice. Called in response to 122 * register_netdev. 123 * 124 * Arguments: 125 * none 126 * 127 * Returns: 128 * nothing 129 ----------------------------------------------------------------*/ 130 static int p80211knetdev_init(netdevice_t *netdev) 131 { 132 /* Called in response to register_netdev */ 133 /* This is usually the probe function, but the probe has */ 134 /* already been done by the MSD and the create_kdev */ 135 /* function. All we do here is return success */ 136 return 0; 137 } 138 139 /*---------------------------------------------------------------- 140 * p80211knetdev_get_stats 141 * 142 * Statistics retrieval for linux netdevices. Here we're reporting 143 * the Linux i/f level statistics. Hence, for the primary numbers, 144 * we don't want to report the numbers from the MIB. Eventually, 145 * it might be useful to collect some of the error counters though. 146 * 147 * Arguments: 148 * netdev Linux netdevice 149 * 150 * Returns: 151 * the address of the statistics structure 152 ----------------------------------------------------------------*/ 153 static struct net_device_stats *p80211knetdev_get_stats(netdevice_t *netdev) 154 { 155 wlandevice_t *wlandev = netdev->ml_priv; 156 157 /* TODO: review the MIB stats for items that correspond to 158 linux stats */ 159 160 return &(wlandev->linux_stats); 161 } 162 163 /*---------------------------------------------------------------- 164 * p80211knetdev_open 165 * 166 * Linux netdevice open method. Following a successful call here, 167 * the device is supposed to be ready for tx and rx. In our 168 * situation that may not be entirely true due to the state of the 169 * MAC below. 170 * 171 * Arguments: 172 * netdev Linux network device structure 173 * 174 * Returns: 175 * zero on success, non-zero otherwise 176 ----------------------------------------------------------------*/ 177 static int p80211knetdev_open(netdevice_t *netdev) 178 { 179 int result = 0; /* success */ 180 wlandevice_t *wlandev = netdev->ml_priv; 181 182 /* Check to make sure the MSD is running */ 183 if (wlandev->msdstate != WLAN_MSD_RUNNING) 184 return -ENODEV; 185 186 /* Tell the MSD to open */ 187 if (wlandev->open != NULL) { 188 result = wlandev->open(wlandev); 189 if (result == 0) { 190 netif_start_queue(wlandev->netdev); 191 wlandev->state = WLAN_DEVICE_OPEN; 192 } 193 } else { 194 result = -EAGAIN; 195 } 196 197 return result; 198 } 199 200 /*---------------------------------------------------------------- 201 * p80211knetdev_stop 202 * 203 * Linux netdevice stop (close) method. Following this call, 204 * no frames should go up or down through this interface. 205 * 206 * Arguments: 207 * netdev Linux network device structure 208 * 209 * Returns: 210 * zero on success, non-zero otherwise 211 ----------------------------------------------------------------*/ 212 static int p80211knetdev_stop(netdevice_t *netdev) 213 { 214 int result = 0; 215 wlandevice_t *wlandev = netdev->ml_priv; 216 217 if (wlandev->close != NULL) 218 result = wlandev->close(wlandev); 219 220 netif_stop_queue(wlandev->netdev); 221 wlandev->state = WLAN_DEVICE_CLOSED; 222 223 return result; 224 } 225 226 /*---------------------------------------------------------------- 227 * p80211netdev_rx 228 * 229 * Frame receive function called by the mac specific driver. 230 * 231 * Arguments: 232 * wlandev WLAN network device structure 233 * skb skbuff containing a full 802.11 frame. 234 * Returns: 235 * nothing 236 * Side effects: 237 * 238 ----------------------------------------------------------------*/ 239 void p80211netdev_rx(wlandevice_t *wlandev, struct sk_buff *skb) 240 { 241 /* Enqueue for post-irq processing */ 242 skb_queue_tail(&wlandev->nsd_rxq, skb); 243 244 tasklet_schedule(&wlandev->rx_bh); 245 246 return; 247 } 248 249 /*---------------------------------------------------------------- 250 * p80211netdev_rx_bh 251 * 252 * Deferred processing of all received frames. 253 * 254 * Arguments: 255 * wlandev WLAN network device structure 256 * skb skbuff containing a full 802.11 frame. 257 * Returns: 258 * nothing 259 * Side effects: 260 * 261 ----------------------------------------------------------------*/ 262 static void p80211netdev_rx_bh(unsigned long arg) 263 { 264 wlandevice_t *wlandev = (wlandevice_t *) arg; 265 struct sk_buff *skb = NULL; 266 netdevice_t *dev = wlandev->netdev; 267 struct p80211_hdr_a3 *hdr; 268 u16 fc; 269 270 /* Let's empty our our queue */ 271 while ((skb = skb_dequeue(&wlandev->nsd_rxq))) { 272 if (wlandev->state == WLAN_DEVICE_OPEN) { 273 274 if (dev->type != ARPHRD_ETHER) { 275 /* RAW frame; we shouldn't convert it */ 276 /* XXX Append the Prism Header here instead. */ 277 278 /* set up various data fields */ 279 skb->dev = dev; 280 skb_reset_mac_header(skb); 281 skb->ip_summed = CHECKSUM_NONE; 282 skb->pkt_type = PACKET_OTHERHOST; 283 skb->protocol = htons(ETH_P_80211_RAW); 284 dev->last_rx = jiffies; 285 286 wlandev->linux_stats.rx_packets++; 287 wlandev->linux_stats.rx_bytes += skb->len; 288 netif_rx_ni(skb); 289 continue; 290 } else { 291 hdr = (struct p80211_hdr_a3 *) skb->data; 292 fc = le16_to_cpu(hdr->fc); 293 if (p80211_rx_typedrop(wlandev, fc)) { 294 dev_kfree_skb(skb); 295 continue; 296 } 297 298 /* perform mcast filtering */ 299 if (wlandev->netdev->flags & IFF_ALLMULTI) { 300 /* allow my local address through */ 301 if (memcmp 302 (hdr->a1, wlandev->netdev->dev_addr, 303 ETH_ALEN) != 0) { 304 /* but reject anything else that 305 isn't multicast */ 306 if (!(hdr->a1[0] & 0x01)) { 307 dev_kfree_skb(skb); 308 continue; 309 } 310 } 311 } 312 313 if (skb_p80211_to_ether 314 (wlandev, wlandev->ethconv, skb) == 0) { 315 skb->dev->last_rx = jiffies; 316 wlandev->linux_stats.rx_packets++; 317 wlandev->linux_stats.rx_bytes += 318 skb->len; 319 netif_rx_ni(skb); 320 continue; 321 } 322 pr_debug("p80211_to_ether failed.\n"); 323 } 324 } 325 dev_kfree_skb(skb); 326 } 327 } 328 329 /*---------------------------------------------------------------- 330 * p80211knetdev_hard_start_xmit 331 * 332 * Linux netdevice method for transmitting a frame. 333 * 334 * Arguments: 335 * skb Linux sk_buff containing the frame. 336 * netdev Linux netdevice. 337 * 338 * Side effects: 339 * If the lower layers report that buffers are full. netdev->tbusy 340 * will be set to prevent higher layers from sending more traffic. 341 * 342 * Note: If this function returns non-zero, higher layers retain 343 * ownership of the skb. 344 * 345 * Returns: 346 * zero on success, non-zero on failure. 347 ----------------------------------------------------------------*/ 348 static int p80211knetdev_hard_start_xmit(struct sk_buff *skb, 349 netdevice_t *netdev) 350 { 351 int result = 0; 352 int txresult = -1; 353 wlandevice_t *wlandev = netdev->ml_priv; 354 union p80211_hdr p80211_hdr; 355 struct p80211_metawep p80211_wep; 356 357 if (skb == NULL) 358 return NETDEV_TX_OK; 359 360 if (wlandev->state != WLAN_DEVICE_OPEN) { 361 result = 1; 362 goto failed; 363 } 364 365 memset(&p80211_hdr, 0, sizeof(union p80211_hdr)); 366 memset(&p80211_wep, 0, sizeof(struct p80211_metawep)); 367 368 if (netif_queue_stopped(netdev)) { 369 pr_debug("called when queue stopped.\n"); 370 result = 1; 371 goto failed; 372 } 373 374 netif_stop_queue(netdev); 375 376 /* Check to see that a valid mode is set */ 377 switch (wlandev->macmode) { 378 case WLAN_MACMODE_IBSS_STA: 379 case WLAN_MACMODE_ESS_STA: 380 case WLAN_MACMODE_ESS_AP: 381 break; 382 default: 383 /* Mode isn't set yet, just drop the frame 384 * and return success . 385 * TODO: we need a saner way to handle this 386 */ 387 if (skb->protocol != ETH_P_80211_RAW) { 388 netif_start_queue(wlandev->netdev); 389 printk(KERN_NOTICE 390 "Tx attempt prior to association, frame dropped.\n"); 391 wlandev->linux_stats.tx_dropped++; 392 result = 0; 393 goto failed; 394 } 395 break; 396 } 397 398 /* Check for raw transmits */ 399 if (skb->protocol == ETH_P_80211_RAW) { 400 if (!capable(CAP_NET_ADMIN)) { 401 result = 1; 402 goto failed; 403 } 404 /* move the header over */ 405 memcpy(&p80211_hdr, skb->data, sizeof(union p80211_hdr)); 406 skb_pull(skb, sizeof(union p80211_hdr)); 407 } else { 408 if (skb_ether_to_p80211 409 (wlandev, wlandev->ethconv, skb, &p80211_hdr, 410 &p80211_wep) != 0) { 411 /* convert failed */ 412 pr_debug("ether_to_80211(%d) failed.\n", 413 wlandev->ethconv); 414 result = 1; 415 goto failed; 416 } 417 } 418 if (wlandev->txframe == NULL) { 419 result = 1; 420 goto failed; 421 } 422 423 netdev->trans_start = jiffies; 424 425 wlandev->linux_stats.tx_packets++; 426 /* count only the packet payload */ 427 wlandev->linux_stats.tx_bytes += skb->len; 428 429 txresult = wlandev->txframe(wlandev, skb, &p80211_hdr, &p80211_wep); 430 431 if (txresult == 0) { 432 /* success and more buf */ 433 /* avail, re: hw_txdata */ 434 netif_wake_queue(wlandev->netdev); 435 result = NETDEV_TX_OK; 436 } else if (txresult == 1) { 437 /* success, no more avail */ 438 pr_debug("txframe success, no more bufs\n"); 439 /* netdev->tbusy = 1; don't set here, irqhdlr */ 440 /* may have already cleared it */ 441 result = NETDEV_TX_OK; 442 } else if (txresult == 2) { 443 /* alloc failure, drop frame */ 444 pr_debug("txframe returned alloc_fail\n"); 445 result = NETDEV_TX_BUSY; 446 } else { 447 /* buffer full or queue busy, drop frame. */ 448 pr_debug("txframe returned full or busy\n"); 449 result = NETDEV_TX_BUSY; 450 } 451 452 failed: 453 /* Free up the WEP buffer if it's not the same as the skb */ 454 if ((p80211_wep.data) && (p80211_wep.data != skb->data)) 455 kzfree(p80211_wep.data); 456 457 /* we always free the skb here, never in a lower level. */ 458 if (!result) 459 dev_kfree_skb(skb); 460 461 return result; 462 } 463 464 /*---------------------------------------------------------------- 465 * p80211knetdev_set_multicast_list 466 * 467 * Called from higher lavers whenever there's a need to set/clear 468 * promiscuous mode or rewrite the multicast list. 469 * 470 * Arguments: 471 * none 472 * 473 * Returns: 474 * nothing 475 ----------------------------------------------------------------*/ 476 static void p80211knetdev_set_multicast_list(netdevice_t *dev) 477 { 478 wlandevice_t *wlandev = dev->ml_priv; 479 480 /* TODO: real multicast support as well */ 481 482 if (wlandev->set_multicast_list) 483 wlandev->set_multicast_list(wlandev, dev); 484 485 } 486 487 #ifdef SIOCETHTOOL 488 489 static int p80211netdev_ethtool(wlandevice_t *wlandev, void __user *useraddr) 490 { 491 u32 ethcmd; 492 struct ethtool_drvinfo info; 493 struct ethtool_value edata; 494 495 memset(&info, 0, sizeof(info)); 496 memset(&edata, 0, sizeof(edata)); 497 498 if (copy_from_user(ðcmd, useraddr, sizeof(ethcmd))) 499 return -EFAULT; 500 501 switch (ethcmd) { 502 case ETHTOOL_GDRVINFO: 503 info.cmd = ethcmd; 504 snprintf(info.driver, sizeof(info.driver), "p80211_%s", 505 wlandev->nsdname); 506 snprintf(info.version, sizeof(info.version), "%s", 507 WLAN_RELEASE); 508 509 if (copy_to_user(useraddr, &info, sizeof(info))) 510 return -EFAULT; 511 return 0; 512 #ifdef ETHTOOL_GLINK 513 case ETHTOOL_GLINK: 514 edata.cmd = ethcmd; 515 516 if (wlandev->linkstatus && 517 (wlandev->macmode != WLAN_MACMODE_NONE)) { 518 edata.data = 1; 519 } else { 520 edata.data = 0; 521 } 522 523 if (copy_to_user(useraddr, &edata, sizeof(edata))) 524 return -EFAULT; 525 return 0; 526 #endif 527 } 528 529 return -EOPNOTSUPP; 530 } 531 532 #endif 533 534 /*---------------------------------------------------------------- 535 * p80211knetdev_do_ioctl 536 * 537 * Handle an ioctl call on one of our devices. Everything Linux 538 * ioctl specific is done here. Then we pass the contents of the 539 * ifr->data to the request message handler. 540 * 541 * Arguments: 542 * dev Linux kernel netdevice 543 * ifr Our private ioctl request structure, typed for the 544 * generic struct ifreq so we can use ptr to func 545 * w/o cast. 546 * 547 * Returns: 548 * zero on success, a negative errno on failure. Possible values: 549 * -ENETDOWN Device isn't up. 550 * -EBUSY cmd already in progress 551 * -ETIME p80211 cmd timed out (MSD may have its own timers) 552 * -EFAULT memory fault copying msg from user buffer 553 * -ENOMEM unable to allocate kernel msg buffer 554 * -ENOSYS bad magic, it the cmd really for us? 555 * -EintR sleeping on cmd, awakened by signal, cmd cancelled. 556 * 557 * Call Context: 558 * Process thread (ioctl caller). TODO: SMP support may require 559 * locks. 560 ----------------------------------------------------------------*/ 561 static int p80211knetdev_do_ioctl(netdevice_t *dev, struct ifreq *ifr, int cmd) 562 { 563 int result = 0; 564 struct p80211ioctl_req *req = (struct p80211ioctl_req *) ifr; 565 wlandevice_t *wlandev = dev->ml_priv; 566 u8 *msgbuf; 567 568 pr_debug("rx'd ioctl, cmd=%d, len=%d\n", cmd, req->len); 569 570 #ifdef SIOCETHTOOL 571 if (cmd == SIOCETHTOOL) { 572 result = 573 p80211netdev_ethtool(wlandev, (void __user *)ifr->ifr_data); 574 goto bail; 575 } 576 #endif 577 578 /* Test the magic, assume ifr is good if it's there */ 579 if (req->magic != P80211_IOCTL_MAGIC) { 580 result = -ENOSYS; 581 goto bail; 582 } 583 584 if (cmd == P80211_IFTEST) { 585 result = 0; 586 goto bail; 587 } else if (cmd != P80211_IFREQ) { 588 result = -ENOSYS; 589 goto bail; 590 } 591 592 /* Allocate a buf of size req->len */ 593 msgbuf = kmalloc(req->len, GFP_KERNEL); 594 if (msgbuf) { 595 if (copy_from_user(msgbuf, (void __user *)req->data, req->len)) 596 result = -EFAULT; 597 else 598 result = p80211req_dorequest(wlandev, msgbuf); 599 600 if (result == 0) { 601 if (copy_to_user 602 ((void __user *)req->data, msgbuf, req->len)) { 603 result = -EFAULT; 604 } 605 } 606 kfree(msgbuf); 607 } else { 608 result = -ENOMEM; 609 } 610 bail: 611 /* If allocate,copyfrom or copyto fails, return errno */ 612 return result; 613 } 614 615 /*---------------------------------------------------------------- 616 * p80211knetdev_set_mac_address 617 * 618 * Handles the ioctl for changing the MACAddress of a netdevice 619 * 620 * references: linux/netdevice.h and drivers/net/net_init.c 621 * 622 * NOTE: [MSM] We only prevent address changes when the netdev is 623 * up. We don't control anything based on dot11 state. If the 624 * address is changed on a STA that's currently associated, you 625 * will probably lose the ability to send and receive data frames. 626 * Just be aware. Therefore, this should usually only be done 627 * prior to scan/join/auth/assoc. 628 * 629 * Arguments: 630 * dev netdevice struct 631 * addr the new MACAddress (a struct) 632 * 633 * Returns: 634 * zero on success, a negative errno on failure. Possible values: 635 * -EBUSY device is bussy (cmd not possible) 636 * -and errors returned by: p80211req_dorequest(..) 637 * 638 * by: Collin R. Mulliner <collin@mulliner.org> 639 ----------------------------------------------------------------*/ 640 static int p80211knetdev_set_mac_address(netdevice_t *dev, void *addr) 641 { 642 struct sockaddr *new_addr = addr; 643 struct p80211msg_dot11req_mibset dot11req; 644 p80211item_unk392_t *mibattr; 645 p80211item_pstr6_t *macaddr; 646 p80211item_uint32_t *resultcode; 647 int result = 0; 648 649 /* If we're running, we don't allow MAC address changes */ 650 if (netif_running(dev)) 651 return -EBUSY; 652 653 /* Set up some convenience pointers. */ 654 mibattr = &dot11req.mibattribute; 655 macaddr = (p80211item_pstr6_t *) &mibattr->data; 656 resultcode = &dot11req.resultcode; 657 658 /* Set up a dot11req_mibset */ 659 memset(&dot11req, 0, sizeof(struct p80211msg_dot11req_mibset)); 660 dot11req.msgcode = DIDmsg_dot11req_mibset; 661 dot11req.msglen = sizeof(struct p80211msg_dot11req_mibset); 662 memcpy(dot11req.devname, 663 ((wlandevice_t *) dev->ml_priv)->name, WLAN_DEVNAMELEN_MAX - 1); 664 665 /* Set up the mibattribute argument */ 666 mibattr->did = DIDmsg_dot11req_mibset_mibattribute; 667 mibattr->status = P80211ENUM_msgitem_status_data_ok; 668 mibattr->len = sizeof(mibattr->data); 669 670 macaddr->did = DIDmib_dot11mac_dot11OperationTable_dot11MACAddress; 671 macaddr->status = P80211ENUM_msgitem_status_data_ok; 672 macaddr->len = sizeof(macaddr->data); 673 macaddr->data.len = ETH_ALEN; 674 memcpy(&macaddr->data.data, new_addr->sa_data, ETH_ALEN); 675 676 /* Set up the resultcode argument */ 677 resultcode->did = DIDmsg_dot11req_mibset_resultcode; 678 resultcode->status = P80211ENUM_msgitem_status_no_value; 679 resultcode->len = sizeof(resultcode->data); 680 resultcode->data = 0; 681 682 /* now fire the request */ 683 result = p80211req_dorequest(dev->ml_priv, (u8 *) &dot11req); 684 685 /* If the request wasn't successful, report an error and don't 686 * change the netdev address 687 */ 688 if (result != 0 || resultcode->data != P80211ENUM_resultcode_success) { 689 printk(KERN_ERR 690 "Low-level driver failed dot11req_mibset(dot11MACAddress).\n"); 691 result = -EADDRNOTAVAIL; 692 } else { 693 /* everything's ok, change the addr in netdev */ 694 memcpy(dev->dev_addr, new_addr->sa_data, dev->addr_len); 695 } 696 697 return result; 698 } 699 700 static int wlan_change_mtu(netdevice_t *dev, int new_mtu) 701 { 702 /* 2312 is max 802.11 payload, 20 is overhead, (ether + llc +snap) 703 and another 8 for wep. */ 704 if ((new_mtu < 68) || (new_mtu > (2312 - 20 - 8))) 705 return -EINVAL; 706 707 dev->mtu = new_mtu; 708 709 return 0; 710 } 711 712 static const struct net_device_ops p80211_netdev_ops = { 713 .ndo_init = p80211knetdev_init, 714 .ndo_open = p80211knetdev_open, 715 .ndo_stop = p80211knetdev_stop, 716 .ndo_get_stats = p80211knetdev_get_stats, 717 .ndo_start_xmit = p80211knetdev_hard_start_xmit, 718 .ndo_set_rx_mode = p80211knetdev_set_multicast_list, 719 .ndo_do_ioctl = p80211knetdev_do_ioctl, 720 .ndo_set_mac_address = p80211knetdev_set_mac_address, 721 .ndo_tx_timeout = p80211knetdev_tx_timeout, 722 .ndo_change_mtu = wlan_change_mtu, 723 .ndo_validate_addr = eth_validate_addr, 724 }; 725 726 /*---------------------------------------------------------------- 727 * wlan_setup 728 * 729 * Roughly matches the functionality of ether_setup. Here 730 * we set up any members of the wlandevice structure that are common 731 * to all devices. Additionally, we allocate a linux 'struct device' 732 * and perform the same setup as ether_setup. 733 * 734 * Note: It's important that the caller have setup the wlandev->name 735 * ptr prior to calling this function. 736 * 737 * Arguments: 738 * wlandev ptr to the wlandev structure for the 739 * interface. 740 * physdev ptr to usb device 741 * Returns: 742 * zero on success, non-zero otherwise. 743 * Call Context: 744 * Should be process thread. We'll assume it might be 745 * interrupt though. When we add support for statically 746 * compiled drivers, this function will be called in the 747 * context of the kernel startup code. 748 ----------------------------------------------------------------*/ 749 int wlan_setup(wlandevice_t *wlandev, struct device *physdev) 750 { 751 int result = 0; 752 netdevice_t *netdev; 753 struct wiphy *wiphy; 754 struct wireless_dev *wdev; 755 756 /* Set up the wlandev */ 757 wlandev->state = WLAN_DEVICE_CLOSED; 758 wlandev->ethconv = WLAN_ETHCONV_8021h; 759 wlandev->macmode = WLAN_MACMODE_NONE; 760 761 /* Set up the rx queue */ 762 skb_queue_head_init(&wlandev->nsd_rxq); 763 tasklet_init(&wlandev->rx_bh, 764 p80211netdev_rx_bh, (unsigned long)wlandev); 765 766 /* Allocate and initialize the wiphy struct */ 767 wiphy = wlan_create_wiphy(physdev, wlandev); 768 if (wiphy == NULL) { 769 printk(KERN_ERR "Failed to alloc wiphy.\n"); 770 return 1; 771 } 772 773 /* Allocate and initialize the struct device */ 774 netdev = alloc_netdev(sizeof(struct wireless_dev), "wlan%d", 775 ether_setup); 776 if (netdev == NULL) { 777 printk(KERN_ERR "Failed to alloc netdev.\n"); 778 wlan_free_wiphy(wiphy); 779 result = 1; 780 } else { 781 wlandev->netdev = netdev; 782 netdev->ml_priv = wlandev; 783 netdev->netdev_ops = &p80211_netdev_ops; 784 wdev = netdev_priv(netdev); 785 wdev->wiphy = wiphy; 786 wdev->iftype = NL80211_IFTYPE_STATION; 787 netdev->ieee80211_ptr = wdev; 788 789 netif_stop_queue(netdev); 790 netif_carrier_off(netdev); 791 } 792 793 return result; 794 } 795 796 /*---------------------------------------------------------------- 797 * wlan_unsetup 798 * 799 * This function is paired with the wlan_setup routine. It should 800 * be called after unregister_wlandev. Basically, all it does is 801 * free the 'struct device' that's associated with the wlandev. 802 * We do it here because the 'struct device' isn't allocated 803 * explicitly in the driver code, it's done in wlan_setup. To 804 * do the free in the driver might seem like 'magic'. 805 * 806 * Arguments: 807 * wlandev ptr to the wlandev structure for the 808 * interface. 809 * Returns: 810 * zero on success, non-zero otherwise. 811 * Call Context: 812 * Should be process thread. We'll assume it might be 813 * interrupt though. When we add support for statically 814 * compiled drivers, this function will be called in the 815 * context of the kernel startup code. 816 ----------------------------------------------------------------*/ 817 int wlan_unsetup(wlandevice_t *wlandev) 818 { 819 struct wireless_dev *wdev; 820 821 tasklet_kill(&wlandev->rx_bh); 822 823 if (wlandev->netdev) { 824 wdev = netdev_priv(wlandev->netdev); 825 if (wdev->wiphy) 826 wlan_free_wiphy(wdev->wiphy); 827 free_netdev(wlandev->netdev); 828 wlandev->netdev = NULL; 829 } 830 831 return 0; 832 } 833 834 /*---------------------------------------------------------------- 835 * register_wlandev 836 * 837 * Roughly matches the functionality of register_netdev. This function 838 * is called after the driver has successfully probed and set up the 839 * resources for the device. It's now ready to become a named device 840 * in the Linux system. 841 * 842 * First we allocate a name for the device (if not already set), then 843 * we call the Linux function register_netdevice. 844 * 845 * Arguments: 846 * wlandev ptr to the wlandev structure for the 847 * interface. 848 * Returns: 849 * zero on success, non-zero otherwise. 850 * Call Context: 851 * Can be either interrupt or not. 852 ----------------------------------------------------------------*/ 853 int register_wlandev(wlandevice_t *wlandev) 854 { 855 int i = 0; 856 857 i = register_netdev(wlandev->netdev); 858 if (i) 859 return i; 860 861 return 0; 862 } 863 864 /*---------------------------------------------------------------- 865 * unregister_wlandev 866 * 867 * Roughly matches the functionality of unregister_netdev. This 868 * function is called to remove a named device from the system. 869 * 870 * First we tell linux that the device should no longer exist. 871 * Then we remove it from the list of known wlan devices. 872 * 873 * Arguments: 874 * wlandev ptr to the wlandev structure for the 875 * interface. 876 * Returns: 877 * zero on success, non-zero otherwise. 878 * Call Context: 879 * Can be either interrupt or not. 880 ----------------------------------------------------------------*/ 881 int unregister_wlandev(wlandevice_t *wlandev) 882 { 883 struct sk_buff *skb; 884 885 unregister_netdev(wlandev->netdev); 886 887 /* Now to clean out the rx queue */ 888 while ((skb = skb_dequeue(&wlandev->nsd_rxq))) 889 dev_kfree_skb(skb); 890 891 return 0; 892 } 893 894 /*---------------------------------------------------------------- 895 * p80211netdev_hwremoved 896 * 897 * Hardware removed notification. This function should be called 898 * immediately after an MSD has detected that the underlying hardware 899 * has been yanked out from under us. The primary things we need 900 * to do are: 901 * - Mark the wlandev 902 * - Prevent any further traffic from the knetdev i/f 903 * - Prevent any further requests from mgmt i/f 904 * - If there are any waitq'd mgmt requests or mgmt-frame exchanges, 905 * shut them down. 906 * - Call the MSD hwremoved function. 907 * 908 * The remainder of the cleanup will be handled by unregister(). 909 * Our primary goal here is to prevent as much tickling of the MSD 910 * as possible since the MSD is already in a 'wounded' state. 911 * 912 * TODO: As new features are added, this function should be 913 * updated. 914 * 915 * Arguments: 916 * wlandev WLAN network device structure 917 * Returns: 918 * nothing 919 * Side effects: 920 * 921 * Call context: 922 * Usually interrupt. 923 ----------------------------------------------------------------*/ 924 void p80211netdev_hwremoved(wlandevice_t *wlandev) 925 { 926 wlandev->hwremoved = 1; 927 if (wlandev->state == WLAN_DEVICE_OPEN) 928 netif_stop_queue(wlandev->netdev); 929 930 netif_device_detach(wlandev->netdev); 931 } 932 933 /*---------------------------------------------------------------- 934 * p80211_rx_typedrop 935 * 936 * Classifies the frame, increments the appropriate counter, and 937 * returns 0|1|2 indicating whether the driver should handle, ignore, or 938 * drop the frame 939 * 940 * Arguments: 941 * wlandev wlan device structure 942 * fc frame control field 943 * 944 * Returns: 945 * zero if the frame should be handled by the driver, 946 * one if the frame should be ignored 947 * anything else means we drop it. 948 * 949 * Side effects: 950 * 951 * Call context: 952 * interrupt 953 ----------------------------------------------------------------*/ 954 static int p80211_rx_typedrop(wlandevice_t *wlandev, u16 fc) 955 { 956 u16 ftype; 957 u16 fstype; 958 int drop = 0; 959 /* Classify frame, increment counter */ 960 ftype = WLAN_GET_FC_FTYPE(fc); 961 fstype = WLAN_GET_FC_FSTYPE(fc); 962 #if 0 963 pr_debug("rx_typedrop : ftype=%d fstype=%d.\n", ftype, fstype); 964 #endif 965 switch (ftype) { 966 case WLAN_FTYPE_MGMT: 967 if ((wlandev->netdev->flags & IFF_PROMISC) || 968 (wlandev->netdev->flags & IFF_ALLMULTI)) { 969 drop = 1; 970 break; 971 } 972 pr_debug("rx'd mgmt:\n"); 973 wlandev->rx.mgmt++; 974 switch (fstype) { 975 case WLAN_FSTYPE_ASSOCREQ: 976 /* printk("assocreq"); */ 977 wlandev->rx.assocreq++; 978 break; 979 case WLAN_FSTYPE_ASSOCRESP: 980 /* printk("assocresp"); */ 981 wlandev->rx.assocresp++; 982 break; 983 case WLAN_FSTYPE_REASSOCREQ: 984 /* printk("reassocreq"); */ 985 wlandev->rx.reassocreq++; 986 break; 987 case WLAN_FSTYPE_REASSOCRESP: 988 /* printk("reassocresp"); */ 989 wlandev->rx.reassocresp++; 990 break; 991 case WLAN_FSTYPE_PROBEREQ: 992 /* printk("probereq"); */ 993 wlandev->rx.probereq++; 994 break; 995 case WLAN_FSTYPE_PROBERESP: 996 /* printk("proberesp"); */ 997 wlandev->rx.proberesp++; 998 break; 999 case WLAN_FSTYPE_BEACON: 1000 /* printk("beacon"); */ 1001 wlandev->rx.beacon++; 1002 break; 1003 case WLAN_FSTYPE_ATIM: 1004 /* printk("atim"); */ 1005 wlandev->rx.atim++; 1006 break; 1007 case WLAN_FSTYPE_DISASSOC: 1008 /* printk("disassoc"); */ 1009 wlandev->rx.disassoc++; 1010 break; 1011 case WLAN_FSTYPE_AUTHEN: 1012 /* printk("authen"); */ 1013 wlandev->rx.authen++; 1014 break; 1015 case WLAN_FSTYPE_DEAUTHEN: 1016 /* printk("deauthen"); */ 1017 wlandev->rx.deauthen++; 1018 break; 1019 default: 1020 /* printk("unknown"); */ 1021 wlandev->rx.mgmt_unknown++; 1022 break; 1023 } 1024 /* printk("\n"); */ 1025 drop = 2; 1026 break; 1027 1028 case WLAN_FTYPE_CTL: 1029 if ((wlandev->netdev->flags & IFF_PROMISC) || 1030 (wlandev->netdev->flags & IFF_ALLMULTI)) { 1031 drop = 1; 1032 break; 1033 } 1034 pr_debug("rx'd ctl:\n"); 1035 wlandev->rx.ctl++; 1036 switch (fstype) { 1037 case WLAN_FSTYPE_PSPOLL: 1038 /* printk("pspoll"); */ 1039 wlandev->rx.pspoll++; 1040 break; 1041 case WLAN_FSTYPE_RTS: 1042 /* printk("rts"); */ 1043 wlandev->rx.rts++; 1044 break; 1045 case WLAN_FSTYPE_CTS: 1046 /* printk("cts"); */ 1047 wlandev->rx.cts++; 1048 break; 1049 case WLAN_FSTYPE_ACK: 1050 /* printk("ack"); */ 1051 wlandev->rx.ack++; 1052 break; 1053 case WLAN_FSTYPE_CFEND: 1054 /* printk("cfend"); */ 1055 wlandev->rx.cfend++; 1056 break; 1057 case WLAN_FSTYPE_CFENDCFACK: 1058 /* printk("cfendcfack"); */ 1059 wlandev->rx.cfendcfack++; 1060 break; 1061 default: 1062 /* printk("unknown"); */ 1063 wlandev->rx.ctl_unknown++; 1064 break; 1065 } 1066 /* printk("\n"); */ 1067 drop = 2; 1068 break; 1069 1070 case WLAN_FTYPE_DATA: 1071 wlandev->rx.data++; 1072 switch (fstype) { 1073 case WLAN_FSTYPE_DATAONLY: 1074 wlandev->rx.dataonly++; 1075 break; 1076 case WLAN_FSTYPE_DATA_CFACK: 1077 wlandev->rx.data_cfack++; 1078 break; 1079 case WLAN_FSTYPE_DATA_CFPOLL: 1080 wlandev->rx.data_cfpoll++; 1081 break; 1082 case WLAN_FSTYPE_DATA_CFACK_CFPOLL: 1083 wlandev->rx.data__cfack_cfpoll++; 1084 break; 1085 case WLAN_FSTYPE_NULL: 1086 pr_debug("rx'd data:null\n"); 1087 wlandev->rx.null++; 1088 break; 1089 case WLAN_FSTYPE_CFACK: 1090 pr_debug("rx'd data:cfack\n"); 1091 wlandev->rx.cfack++; 1092 break; 1093 case WLAN_FSTYPE_CFPOLL: 1094 pr_debug("rx'd data:cfpoll\n"); 1095 wlandev->rx.cfpoll++; 1096 break; 1097 case WLAN_FSTYPE_CFACK_CFPOLL: 1098 pr_debug("rx'd data:cfack_cfpoll\n"); 1099 wlandev->rx.cfack_cfpoll++; 1100 break; 1101 default: 1102 /* printk("unknown"); */ 1103 wlandev->rx.data_unknown++; 1104 break; 1105 } 1106 1107 break; 1108 } 1109 return drop; 1110 } 1111 1112 static void p80211knetdev_tx_timeout(netdevice_t *netdev) 1113 { 1114 wlandevice_t *wlandev = netdev->ml_priv; 1115 1116 if (wlandev->tx_timeout) { 1117 wlandev->tx_timeout(wlandev); 1118 } else { 1119 printk(KERN_WARNING "Implement tx_timeout for %s\n", 1120 wlandev->nsdname); 1121 netif_wake_queue(wlandev->netdev); 1122 } 1123 } 1124