1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/debugfs.h> 27 #include <linux/slab.h> 28 #include <trace/events/ext4.h> 29 30 /* 31 * MUSTDO: 32 * - test ext4_ext_search_left() and ext4_ext_search_right() 33 * - search for metadata in few groups 34 * 35 * TODO v4: 36 * - normalization should take into account whether file is still open 37 * - discard preallocations if no free space left (policy?) 38 * - don't normalize tails 39 * - quota 40 * - reservation for superuser 41 * 42 * TODO v3: 43 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 44 * - track min/max extents in each group for better group selection 45 * - mb_mark_used() may allocate chunk right after splitting buddy 46 * - tree of groups sorted by number of free blocks 47 * - error handling 48 */ 49 50 /* 51 * The allocation request involve request for multiple number of blocks 52 * near to the goal(block) value specified. 53 * 54 * During initialization phase of the allocator we decide to use the 55 * group preallocation or inode preallocation depending on the size of 56 * the file. The size of the file could be the resulting file size we 57 * would have after allocation, or the current file size, which ever 58 * is larger. If the size is less than sbi->s_mb_stream_request we 59 * select to use the group preallocation. The default value of 60 * s_mb_stream_request is 16 blocks. This can also be tuned via 61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 62 * terms of number of blocks. 63 * 64 * The main motivation for having small file use group preallocation is to 65 * ensure that we have small files closer together on the disk. 66 * 67 * First stage the allocator looks at the inode prealloc list, 68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 69 * spaces for this particular inode. The inode prealloc space is 70 * represented as: 71 * 72 * pa_lstart -> the logical start block for this prealloc space 73 * pa_pstart -> the physical start block for this prealloc space 74 * pa_len -> length for this prealloc space (in clusters) 75 * pa_free -> free space available in this prealloc space (in clusters) 76 * 77 * The inode preallocation space is used looking at the _logical_ start 78 * block. If only the logical file block falls within the range of prealloc 79 * space we will consume the particular prealloc space. This makes sure that 80 * we have contiguous physical blocks representing the file blocks 81 * 82 * The important thing to be noted in case of inode prealloc space is that 83 * we don't modify the values associated to inode prealloc space except 84 * pa_free. 85 * 86 * If we are not able to find blocks in the inode prealloc space and if we 87 * have the group allocation flag set then we look at the locality group 88 * prealloc space. These are per CPU prealloc list represented as 89 * 90 * ext4_sb_info.s_locality_groups[smp_processor_id()] 91 * 92 * The reason for having a per cpu locality group is to reduce the contention 93 * between CPUs. It is possible to get scheduled at this point. 94 * 95 * The locality group prealloc space is used looking at whether we have 96 * enough free space (pa_free) within the prealloc space. 97 * 98 * If we can't allocate blocks via inode prealloc or/and locality group 99 * prealloc then we look at the buddy cache. The buddy cache is represented 100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 101 * mapped to the buddy and bitmap information regarding different 102 * groups. The buddy information is attached to buddy cache inode so that 103 * we can access them through the page cache. The information regarding 104 * each group is loaded via ext4_mb_load_buddy. The information involve 105 * block bitmap and buddy information. The information are stored in the 106 * inode as: 107 * 108 * { page } 109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 110 * 111 * 112 * one block each for bitmap and buddy information. So for each group we 113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 114 * blocksize) blocks. So it can have information regarding groups_per_page 115 * which is blocks_per_page/2 116 * 117 * The buddy cache inode is not stored on disk. The inode is thrown 118 * away when the filesystem is unmounted. 119 * 120 * We look for count number of blocks in the buddy cache. If we were able 121 * to locate that many free blocks we return with additional information 122 * regarding rest of the contiguous physical block available 123 * 124 * Before allocating blocks via buddy cache we normalize the request 125 * blocks. This ensure we ask for more blocks that we needed. The extra 126 * blocks that we get after allocation is added to the respective prealloc 127 * list. In case of inode preallocation we follow a list of heuristics 128 * based on file size. This can be found in ext4_mb_normalize_request. If 129 * we are doing a group prealloc we try to normalize the request to 130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 131 * dependent on the cluster size; for non-bigalloc file systems, it is 132 * 512 blocks. This can be tuned via 133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 134 * terms of number of blocks. If we have mounted the file system with -O 135 * stripe=<value> option the group prealloc request is normalized to the 136 * the smallest multiple of the stripe value (sbi->s_stripe) which is 137 * greater than the default mb_group_prealloc. 138 * 139 * The regular allocator (using the buddy cache) supports a few tunables. 140 * 141 * /sys/fs/ext4/<partition>/mb_min_to_scan 142 * /sys/fs/ext4/<partition>/mb_max_to_scan 143 * /sys/fs/ext4/<partition>/mb_order2_req 144 * 145 * The regular allocator uses buddy scan only if the request len is power of 146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 147 * value of s_mb_order2_reqs can be tuned via 148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 149 * stripe size (sbi->s_stripe), we try to search for contiguous block in 150 * stripe size. This should result in better allocation on RAID setups. If 151 * not, we search in the specific group using bitmap for best extents. The 152 * tunable min_to_scan and max_to_scan control the behaviour here. 153 * min_to_scan indicate how long the mballoc __must__ look for a best 154 * extent and max_to_scan indicates how long the mballoc __can__ look for a 155 * best extent in the found extents. Searching for the blocks starts with 156 * the group specified as the goal value in allocation context via 157 * ac_g_ex. Each group is first checked based on the criteria whether it 158 * can be used for allocation. ext4_mb_good_group explains how the groups are 159 * checked. 160 * 161 * Both the prealloc space are getting populated as above. So for the first 162 * request we will hit the buddy cache which will result in this prealloc 163 * space getting filled. The prealloc space is then later used for the 164 * subsequent request. 165 */ 166 167 /* 168 * mballoc operates on the following data: 169 * - on-disk bitmap 170 * - in-core buddy (actually includes buddy and bitmap) 171 * - preallocation descriptors (PAs) 172 * 173 * there are two types of preallocations: 174 * - inode 175 * assiged to specific inode and can be used for this inode only. 176 * it describes part of inode's space preallocated to specific 177 * physical blocks. any block from that preallocated can be used 178 * independent. the descriptor just tracks number of blocks left 179 * unused. so, before taking some block from descriptor, one must 180 * make sure corresponded logical block isn't allocated yet. this 181 * also means that freeing any block within descriptor's range 182 * must discard all preallocated blocks. 183 * - locality group 184 * assigned to specific locality group which does not translate to 185 * permanent set of inodes: inode can join and leave group. space 186 * from this type of preallocation can be used for any inode. thus 187 * it's consumed from the beginning to the end. 188 * 189 * relation between them can be expressed as: 190 * in-core buddy = on-disk bitmap + preallocation descriptors 191 * 192 * this mean blocks mballoc considers used are: 193 * - allocated blocks (persistent) 194 * - preallocated blocks (non-persistent) 195 * 196 * consistency in mballoc world means that at any time a block is either 197 * free or used in ALL structures. notice: "any time" should not be read 198 * literally -- time is discrete and delimited by locks. 199 * 200 * to keep it simple, we don't use block numbers, instead we count number of 201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 202 * 203 * all operations can be expressed as: 204 * - init buddy: buddy = on-disk + PAs 205 * - new PA: buddy += N; PA = N 206 * - use inode PA: on-disk += N; PA -= N 207 * - discard inode PA buddy -= on-disk - PA; PA = 0 208 * - use locality group PA on-disk += N; PA -= N 209 * - discard locality group PA buddy -= PA; PA = 0 210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 211 * is used in real operation because we can't know actual used 212 * bits from PA, only from on-disk bitmap 213 * 214 * if we follow this strict logic, then all operations above should be atomic. 215 * given some of them can block, we'd have to use something like semaphores 216 * killing performance on high-end SMP hardware. let's try to relax it using 217 * the following knowledge: 218 * 1) if buddy is referenced, it's already initialized 219 * 2) while block is used in buddy and the buddy is referenced, 220 * nobody can re-allocate that block 221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 222 * bit set and PA claims same block, it's OK. IOW, one can set bit in 223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 224 * block 225 * 226 * so, now we're building a concurrency table: 227 * - init buddy vs. 228 * - new PA 229 * blocks for PA are allocated in the buddy, buddy must be referenced 230 * until PA is linked to allocation group to avoid concurrent buddy init 231 * - use inode PA 232 * we need to make sure that either on-disk bitmap or PA has uptodate data 233 * given (3) we care that PA-=N operation doesn't interfere with init 234 * - discard inode PA 235 * the simplest way would be to have buddy initialized by the discard 236 * - use locality group PA 237 * again PA-=N must be serialized with init 238 * - discard locality group PA 239 * the simplest way would be to have buddy initialized by the discard 240 * - new PA vs. 241 * - use inode PA 242 * i_data_sem serializes them 243 * - discard inode PA 244 * discard process must wait until PA isn't used by another process 245 * - use locality group PA 246 * some mutex should serialize them 247 * - discard locality group PA 248 * discard process must wait until PA isn't used by another process 249 * - use inode PA 250 * - use inode PA 251 * i_data_sem or another mutex should serializes them 252 * - discard inode PA 253 * discard process must wait until PA isn't used by another process 254 * - use locality group PA 255 * nothing wrong here -- they're different PAs covering different blocks 256 * - discard locality group PA 257 * discard process must wait until PA isn't used by another process 258 * 259 * now we're ready to make few consequences: 260 * - PA is referenced and while it is no discard is possible 261 * - PA is referenced until block isn't marked in on-disk bitmap 262 * - PA changes only after on-disk bitmap 263 * - discard must not compete with init. either init is done before 264 * any discard or they're serialized somehow 265 * - buddy init as sum of on-disk bitmap and PAs is done atomically 266 * 267 * a special case when we've used PA to emptiness. no need to modify buddy 268 * in this case, but we should care about concurrent init 269 * 270 */ 271 272 /* 273 * Logic in few words: 274 * 275 * - allocation: 276 * load group 277 * find blocks 278 * mark bits in on-disk bitmap 279 * release group 280 * 281 * - use preallocation: 282 * find proper PA (per-inode or group) 283 * load group 284 * mark bits in on-disk bitmap 285 * release group 286 * release PA 287 * 288 * - free: 289 * load group 290 * mark bits in on-disk bitmap 291 * release group 292 * 293 * - discard preallocations in group: 294 * mark PAs deleted 295 * move them onto local list 296 * load on-disk bitmap 297 * load group 298 * remove PA from object (inode or locality group) 299 * mark free blocks in-core 300 * 301 * - discard inode's preallocations: 302 */ 303 304 /* 305 * Locking rules 306 * 307 * Locks: 308 * - bitlock on a group (group) 309 * - object (inode/locality) (object) 310 * - per-pa lock (pa) 311 * 312 * Paths: 313 * - new pa 314 * object 315 * group 316 * 317 * - find and use pa: 318 * pa 319 * 320 * - release consumed pa: 321 * pa 322 * group 323 * object 324 * 325 * - generate in-core bitmap: 326 * group 327 * pa 328 * 329 * - discard all for given object (inode, locality group): 330 * object 331 * pa 332 * group 333 * 334 * - discard all for given group: 335 * group 336 * pa 337 * group 338 * object 339 * 340 */ 341 static struct kmem_cache *ext4_pspace_cachep; 342 static struct kmem_cache *ext4_ac_cachep; 343 static struct kmem_cache *ext4_free_data_cachep; 344 345 /* We create slab caches for groupinfo data structures based on the 346 * superblock block size. There will be one per mounted filesystem for 347 * each unique s_blocksize_bits */ 348 #define NR_GRPINFO_CACHES 8 349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 350 351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 354 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 355 }; 356 357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 358 ext4_group_t group); 359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 360 ext4_group_t group); 361 static void ext4_free_data_callback(struct super_block *sb, 362 struct ext4_journal_cb_entry *jce, int rc); 363 364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 365 { 366 #if BITS_PER_LONG == 64 367 *bit += ((unsigned long) addr & 7UL) << 3; 368 addr = (void *) ((unsigned long) addr & ~7UL); 369 #elif BITS_PER_LONG == 32 370 *bit += ((unsigned long) addr & 3UL) << 3; 371 addr = (void *) ((unsigned long) addr & ~3UL); 372 #else 373 #error "how many bits you are?!" 374 #endif 375 return addr; 376 } 377 378 static inline int mb_test_bit(int bit, void *addr) 379 { 380 /* 381 * ext4_test_bit on architecture like powerpc 382 * needs unsigned long aligned address 383 */ 384 addr = mb_correct_addr_and_bit(&bit, addr); 385 return ext4_test_bit(bit, addr); 386 } 387 388 static inline void mb_set_bit(int bit, void *addr) 389 { 390 addr = mb_correct_addr_and_bit(&bit, addr); 391 ext4_set_bit(bit, addr); 392 } 393 394 static inline void mb_clear_bit(int bit, void *addr) 395 { 396 addr = mb_correct_addr_and_bit(&bit, addr); 397 ext4_clear_bit(bit, addr); 398 } 399 400 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 401 { 402 int fix = 0, ret, tmpmax; 403 addr = mb_correct_addr_and_bit(&fix, addr); 404 tmpmax = max + fix; 405 start += fix; 406 407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 408 if (ret > max) 409 return max; 410 return ret; 411 } 412 413 static inline int mb_find_next_bit(void *addr, int max, int start) 414 { 415 int fix = 0, ret, tmpmax; 416 addr = mb_correct_addr_and_bit(&fix, addr); 417 tmpmax = max + fix; 418 start += fix; 419 420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 421 if (ret > max) 422 return max; 423 return ret; 424 } 425 426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 427 { 428 char *bb; 429 430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 431 BUG_ON(max == NULL); 432 433 if (order > e4b->bd_blkbits + 1) { 434 *max = 0; 435 return NULL; 436 } 437 438 /* at order 0 we see each particular block */ 439 if (order == 0) { 440 *max = 1 << (e4b->bd_blkbits + 3); 441 return e4b->bd_bitmap; 442 } 443 444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 446 447 return bb; 448 } 449 450 #ifdef DOUBLE_CHECK 451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 452 int first, int count) 453 { 454 int i; 455 struct super_block *sb = e4b->bd_sb; 456 457 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 458 return; 459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 460 for (i = 0; i < count; i++) { 461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 462 ext4_fsblk_t blocknr; 463 464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 466 ext4_grp_locked_error(sb, e4b->bd_group, 467 inode ? inode->i_ino : 0, 468 blocknr, 469 "freeing block already freed " 470 "(bit %u)", 471 first + i); 472 } 473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 474 } 475 } 476 477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 478 { 479 int i; 480 481 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 482 return; 483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 484 for (i = 0; i < count; i++) { 485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 487 } 488 } 489 490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 491 { 492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 493 unsigned char *b1, *b2; 494 int i; 495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 496 b2 = (unsigned char *) bitmap; 497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 498 if (b1[i] != b2[i]) { 499 ext4_msg(e4b->bd_sb, KERN_ERR, 500 "corruption in group %u " 501 "at byte %u(%u): %x in copy != %x " 502 "on disk/prealloc", 503 e4b->bd_group, i, i * 8, b1[i], b2[i]); 504 BUG(); 505 } 506 } 507 } 508 } 509 510 #else 511 static inline void mb_free_blocks_double(struct inode *inode, 512 struct ext4_buddy *e4b, int first, int count) 513 { 514 return; 515 } 516 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 517 int first, int count) 518 { 519 return; 520 } 521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 522 { 523 return; 524 } 525 #endif 526 527 #ifdef AGGRESSIVE_CHECK 528 529 #define MB_CHECK_ASSERT(assert) \ 530 do { \ 531 if (!(assert)) { \ 532 printk(KERN_EMERG \ 533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 534 function, file, line, # assert); \ 535 BUG(); \ 536 } \ 537 } while (0) 538 539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 540 const char *function, int line) 541 { 542 struct super_block *sb = e4b->bd_sb; 543 int order = e4b->bd_blkbits + 1; 544 int max; 545 int max2; 546 int i; 547 int j; 548 int k; 549 int count; 550 struct ext4_group_info *grp; 551 int fragments = 0; 552 int fstart; 553 struct list_head *cur; 554 void *buddy; 555 void *buddy2; 556 557 { 558 static int mb_check_counter; 559 if (mb_check_counter++ % 100 != 0) 560 return 0; 561 } 562 563 while (order > 1) { 564 buddy = mb_find_buddy(e4b, order, &max); 565 MB_CHECK_ASSERT(buddy); 566 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 567 MB_CHECK_ASSERT(buddy2); 568 MB_CHECK_ASSERT(buddy != buddy2); 569 MB_CHECK_ASSERT(max * 2 == max2); 570 571 count = 0; 572 for (i = 0; i < max; i++) { 573 574 if (mb_test_bit(i, buddy)) { 575 /* only single bit in buddy2 may be 1 */ 576 if (!mb_test_bit(i << 1, buddy2)) { 577 MB_CHECK_ASSERT( 578 mb_test_bit((i<<1)+1, buddy2)); 579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 580 MB_CHECK_ASSERT( 581 mb_test_bit(i << 1, buddy2)); 582 } 583 continue; 584 } 585 586 /* both bits in buddy2 must be 1 */ 587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 589 590 for (j = 0; j < (1 << order); j++) { 591 k = (i * (1 << order)) + j; 592 MB_CHECK_ASSERT( 593 !mb_test_bit(k, e4b->bd_bitmap)); 594 } 595 count++; 596 } 597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 598 order--; 599 } 600 601 fstart = -1; 602 buddy = mb_find_buddy(e4b, 0, &max); 603 for (i = 0; i < max; i++) { 604 if (!mb_test_bit(i, buddy)) { 605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 606 if (fstart == -1) { 607 fragments++; 608 fstart = i; 609 } 610 continue; 611 } 612 fstart = -1; 613 /* check used bits only */ 614 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 615 buddy2 = mb_find_buddy(e4b, j, &max2); 616 k = i >> j; 617 MB_CHECK_ASSERT(k < max2); 618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 619 } 620 } 621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 623 624 grp = ext4_get_group_info(sb, e4b->bd_group); 625 list_for_each(cur, &grp->bb_prealloc_list) { 626 ext4_group_t groupnr; 627 struct ext4_prealloc_space *pa; 628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 630 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 631 for (i = 0; i < pa->pa_len; i++) 632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 633 } 634 return 0; 635 } 636 #undef MB_CHECK_ASSERT 637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 638 __FILE__, __func__, __LINE__) 639 #else 640 #define mb_check_buddy(e4b) 641 #endif 642 643 /* 644 * Divide blocks started from @first with length @len into 645 * smaller chunks with power of 2 blocks. 646 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 647 * then increase bb_counters[] for corresponded chunk size. 648 */ 649 static void ext4_mb_mark_free_simple(struct super_block *sb, 650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 651 struct ext4_group_info *grp) 652 { 653 struct ext4_sb_info *sbi = EXT4_SB(sb); 654 ext4_grpblk_t min; 655 ext4_grpblk_t max; 656 ext4_grpblk_t chunk; 657 unsigned short border; 658 659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 660 661 border = 2 << sb->s_blocksize_bits; 662 663 while (len > 0) { 664 /* find how many blocks can be covered since this position */ 665 max = ffs(first | border) - 1; 666 667 /* find how many blocks of power 2 we need to mark */ 668 min = fls(len) - 1; 669 670 if (max < min) 671 min = max; 672 chunk = 1 << min; 673 674 /* mark multiblock chunks only */ 675 grp->bb_counters[min]++; 676 if (min > 0) 677 mb_clear_bit(first >> min, 678 buddy + sbi->s_mb_offsets[min]); 679 680 len -= chunk; 681 first += chunk; 682 } 683 } 684 685 /* 686 * Cache the order of the largest free extent we have available in this block 687 * group. 688 */ 689 static void 690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 691 { 692 int i; 693 int bits; 694 695 grp->bb_largest_free_order = -1; /* uninit */ 696 697 bits = sb->s_blocksize_bits + 1; 698 for (i = bits; i >= 0; i--) { 699 if (grp->bb_counters[i] > 0) { 700 grp->bb_largest_free_order = i; 701 break; 702 } 703 } 704 } 705 706 static noinline_for_stack 707 void ext4_mb_generate_buddy(struct super_block *sb, 708 void *buddy, void *bitmap, ext4_group_t group) 709 { 710 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 712 ext4_grpblk_t i = 0; 713 ext4_grpblk_t first; 714 ext4_grpblk_t len; 715 unsigned free = 0; 716 unsigned fragments = 0; 717 unsigned long long period = get_cycles(); 718 719 /* initialize buddy from bitmap which is aggregation 720 * of on-disk bitmap and preallocations */ 721 i = mb_find_next_zero_bit(bitmap, max, 0); 722 grp->bb_first_free = i; 723 while (i < max) { 724 fragments++; 725 first = i; 726 i = mb_find_next_bit(bitmap, max, i); 727 len = i - first; 728 free += len; 729 if (len > 1) 730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 731 else 732 grp->bb_counters[0]++; 733 if (i < max) 734 i = mb_find_next_zero_bit(bitmap, max, i); 735 } 736 grp->bb_fragments = fragments; 737 738 if (free != grp->bb_free) { 739 ext4_grp_locked_error(sb, group, 0, 0, 740 "%u clusters in bitmap, %u in gd", 741 free, grp->bb_free); 742 /* 743 * If we intent to continue, we consider group descritor 744 * corrupt and update bb_free using bitmap value 745 */ 746 grp->bb_free = free; 747 } 748 mb_set_largest_free_order(sb, grp); 749 750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 751 752 period = get_cycles() - period; 753 spin_lock(&EXT4_SB(sb)->s_bal_lock); 754 EXT4_SB(sb)->s_mb_buddies_generated++; 755 EXT4_SB(sb)->s_mb_generation_time += period; 756 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 757 } 758 759 /* The buddy information is attached the buddy cache inode 760 * for convenience. The information regarding each group 761 * is loaded via ext4_mb_load_buddy. The information involve 762 * block bitmap and buddy information. The information are 763 * stored in the inode as 764 * 765 * { page } 766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 767 * 768 * 769 * one block each for bitmap and buddy information. 770 * So for each group we take up 2 blocks. A page can 771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 772 * So it can have information regarding groups_per_page which 773 * is blocks_per_page/2 774 * 775 * Locking note: This routine takes the block group lock of all groups 776 * for this page; do not hold this lock when calling this routine! 777 */ 778 779 static int ext4_mb_init_cache(struct page *page, char *incore) 780 { 781 ext4_group_t ngroups; 782 int blocksize; 783 int blocks_per_page; 784 int groups_per_page; 785 int err = 0; 786 int i; 787 ext4_group_t first_group, group; 788 int first_block; 789 struct super_block *sb; 790 struct buffer_head *bhs; 791 struct buffer_head **bh = NULL; 792 struct inode *inode; 793 char *data; 794 char *bitmap; 795 struct ext4_group_info *grinfo; 796 797 mb_debug(1, "init page %lu\n", page->index); 798 799 inode = page->mapping->host; 800 sb = inode->i_sb; 801 ngroups = ext4_get_groups_count(sb); 802 blocksize = 1 << inode->i_blkbits; 803 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 804 805 groups_per_page = blocks_per_page >> 1; 806 if (groups_per_page == 0) 807 groups_per_page = 1; 808 809 /* allocate buffer_heads to read bitmaps */ 810 if (groups_per_page > 1) { 811 i = sizeof(struct buffer_head *) * groups_per_page; 812 bh = kzalloc(i, GFP_NOFS); 813 if (bh == NULL) { 814 err = -ENOMEM; 815 goto out; 816 } 817 } else 818 bh = &bhs; 819 820 first_group = page->index * blocks_per_page / 2; 821 822 /* read all groups the page covers into the cache */ 823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 824 if (group >= ngroups) 825 break; 826 827 grinfo = ext4_get_group_info(sb, group); 828 /* 829 * If page is uptodate then we came here after online resize 830 * which added some new uninitialized group info structs, so 831 * we must skip all initialized uptodate buddies on the page, 832 * which may be currently in use by an allocating task. 833 */ 834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 835 bh[i] = NULL; 836 continue; 837 } 838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 839 err = -ENOMEM; 840 goto out; 841 } 842 mb_debug(1, "read bitmap for group %u\n", group); 843 } 844 845 /* wait for I/O completion */ 846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 848 err = -EIO; 849 goto out; 850 } 851 } 852 853 first_block = page->index * blocks_per_page; 854 for (i = 0; i < blocks_per_page; i++) { 855 int group; 856 857 group = (first_block + i) >> 1; 858 if (group >= ngroups) 859 break; 860 861 if (!bh[group - first_group]) 862 /* skip initialized uptodate buddy */ 863 continue; 864 865 /* 866 * data carry information regarding this 867 * particular group in the format specified 868 * above 869 * 870 */ 871 data = page_address(page) + (i * blocksize); 872 bitmap = bh[group - first_group]->b_data; 873 874 /* 875 * We place the buddy block and bitmap block 876 * close together 877 */ 878 if ((first_block + i) & 1) { 879 /* this is block of buddy */ 880 BUG_ON(incore == NULL); 881 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 882 group, page->index, i * blocksize); 883 trace_ext4_mb_buddy_bitmap_load(sb, group); 884 grinfo = ext4_get_group_info(sb, group); 885 grinfo->bb_fragments = 0; 886 memset(grinfo->bb_counters, 0, 887 sizeof(*grinfo->bb_counters) * 888 (sb->s_blocksize_bits+2)); 889 /* 890 * incore got set to the group block bitmap below 891 */ 892 ext4_lock_group(sb, group); 893 /* init the buddy */ 894 memset(data, 0xff, blocksize); 895 ext4_mb_generate_buddy(sb, data, incore, group); 896 ext4_unlock_group(sb, group); 897 incore = NULL; 898 } else { 899 /* this is block of bitmap */ 900 BUG_ON(incore != NULL); 901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 902 group, page->index, i * blocksize); 903 trace_ext4_mb_bitmap_load(sb, group); 904 905 /* see comments in ext4_mb_put_pa() */ 906 ext4_lock_group(sb, group); 907 memcpy(data, bitmap, blocksize); 908 909 /* mark all preallocated blks used in in-core bitmap */ 910 ext4_mb_generate_from_pa(sb, data, group); 911 ext4_mb_generate_from_freelist(sb, data, group); 912 ext4_unlock_group(sb, group); 913 914 /* set incore so that the buddy information can be 915 * generated using this 916 */ 917 incore = data; 918 } 919 } 920 SetPageUptodate(page); 921 922 out: 923 if (bh) { 924 for (i = 0; i < groups_per_page; i++) 925 brelse(bh[i]); 926 if (bh != &bhs) 927 kfree(bh); 928 } 929 return err; 930 } 931 932 /* 933 * Lock the buddy and bitmap pages. This make sure other parallel init_group 934 * on the same buddy page doesn't happen whild holding the buddy page lock. 935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 937 */ 938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 939 ext4_group_t group, struct ext4_buddy *e4b) 940 { 941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 942 int block, pnum, poff; 943 int blocks_per_page; 944 struct page *page; 945 946 e4b->bd_buddy_page = NULL; 947 e4b->bd_bitmap_page = NULL; 948 949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 950 /* 951 * the buddy cache inode stores the block bitmap 952 * and buddy information in consecutive blocks. 953 * So for each group we need two blocks. 954 */ 955 block = group * 2; 956 pnum = block / blocks_per_page; 957 poff = block % blocks_per_page; 958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 959 if (!page) 960 return -EIO; 961 BUG_ON(page->mapping != inode->i_mapping); 962 e4b->bd_bitmap_page = page; 963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 964 965 if (blocks_per_page >= 2) { 966 /* buddy and bitmap are on the same page */ 967 return 0; 968 } 969 970 block++; 971 pnum = block / blocks_per_page; 972 poff = block % blocks_per_page; 973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 974 if (!page) 975 return -EIO; 976 BUG_ON(page->mapping != inode->i_mapping); 977 e4b->bd_buddy_page = page; 978 return 0; 979 } 980 981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 982 { 983 if (e4b->bd_bitmap_page) { 984 unlock_page(e4b->bd_bitmap_page); 985 page_cache_release(e4b->bd_bitmap_page); 986 } 987 if (e4b->bd_buddy_page) { 988 unlock_page(e4b->bd_buddy_page); 989 page_cache_release(e4b->bd_buddy_page); 990 } 991 } 992 993 /* 994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 995 * block group lock of all groups for this page; do not hold the BG lock when 996 * calling this routine! 997 */ 998 static noinline_for_stack 999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1000 { 1001 1002 struct ext4_group_info *this_grp; 1003 struct ext4_buddy e4b; 1004 struct page *page; 1005 int ret = 0; 1006 1007 mb_debug(1, "init group %u\n", group); 1008 this_grp = ext4_get_group_info(sb, group); 1009 /* 1010 * This ensures that we don't reinit the buddy cache 1011 * page which map to the group from which we are already 1012 * allocating. If we are looking at the buddy cache we would 1013 * have taken a reference using ext4_mb_load_buddy and that 1014 * would have pinned buddy page to page cache. 1015 */ 1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1018 /* 1019 * somebody initialized the group 1020 * return without doing anything 1021 */ 1022 goto err; 1023 } 1024 1025 page = e4b.bd_bitmap_page; 1026 ret = ext4_mb_init_cache(page, NULL); 1027 if (ret) 1028 goto err; 1029 if (!PageUptodate(page)) { 1030 ret = -EIO; 1031 goto err; 1032 } 1033 mark_page_accessed(page); 1034 1035 if (e4b.bd_buddy_page == NULL) { 1036 /* 1037 * If both the bitmap and buddy are in 1038 * the same page we don't need to force 1039 * init the buddy 1040 */ 1041 ret = 0; 1042 goto err; 1043 } 1044 /* init buddy cache */ 1045 page = e4b.bd_buddy_page; 1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1047 if (ret) 1048 goto err; 1049 if (!PageUptodate(page)) { 1050 ret = -EIO; 1051 goto err; 1052 } 1053 mark_page_accessed(page); 1054 err: 1055 ext4_mb_put_buddy_page_lock(&e4b); 1056 return ret; 1057 } 1058 1059 /* 1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1061 * block group lock of all groups for this page; do not hold the BG lock when 1062 * calling this routine! 1063 */ 1064 static noinline_for_stack int 1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1066 struct ext4_buddy *e4b) 1067 { 1068 int blocks_per_page; 1069 int block; 1070 int pnum; 1071 int poff; 1072 struct page *page; 1073 int ret; 1074 struct ext4_group_info *grp; 1075 struct ext4_sb_info *sbi = EXT4_SB(sb); 1076 struct inode *inode = sbi->s_buddy_cache; 1077 1078 mb_debug(1, "load group %u\n", group); 1079 1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1081 grp = ext4_get_group_info(sb, group); 1082 1083 e4b->bd_blkbits = sb->s_blocksize_bits; 1084 e4b->bd_info = grp; 1085 e4b->bd_sb = sb; 1086 e4b->bd_group = group; 1087 e4b->bd_buddy_page = NULL; 1088 e4b->bd_bitmap_page = NULL; 1089 1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1091 /* 1092 * we need full data about the group 1093 * to make a good selection 1094 */ 1095 ret = ext4_mb_init_group(sb, group); 1096 if (ret) 1097 return ret; 1098 } 1099 1100 /* 1101 * the buddy cache inode stores the block bitmap 1102 * and buddy information in consecutive blocks. 1103 * So for each group we need two blocks. 1104 */ 1105 block = group * 2; 1106 pnum = block / blocks_per_page; 1107 poff = block % blocks_per_page; 1108 1109 /* we could use find_or_create_page(), but it locks page 1110 * what we'd like to avoid in fast path ... */ 1111 page = find_get_page(inode->i_mapping, pnum); 1112 if (page == NULL || !PageUptodate(page)) { 1113 if (page) 1114 /* 1115 * drop the page reference and try 1116 * to get the page with lock. If we 1117 * are not uptodate that implies 1118 * somebody just created the page but 1119 * is yet to initialize the same. So 1120 * wait for it to initialize. 1121 */ 1122 page_cache_release(page); 1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1124 if (page) { 1125 BUG_ON(page->mapping != inode->i_mapping); 1126 if (!PageUptodate(page)) { 1127 ret = ext4_mb_init_cache(page, NULL); 1128 if (ret) { 1129 unlock_page(page); 1130 goto err; 1131 } 1132 mb_cmp_bitmaps(e4b, page_address(page) + 1133 (poff * sb->s_blocksize)); 1134 } 1135 unlock_page(page); 1136 } 1137 } 1138 if (page == NULL || !PageUptodate(page)) { 1139 ret = -EIO; 1140 goto err; 1141 } 1142 e4b->bd_bitmap_page = page; 1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1144 mark_page_accessed(page); 1145 1146 block++; 1147 pnum = block / blocks_per_page; 1148 poff = block % blocks_per_page; 1149 1150 page = find_get_page(inode->i_mapping, pnum); 1151 if (page == NULL || !PageUptodate(page)) { 1152 if (page) 1153 page_cache_release(page); 1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1155 if (page) { 1156 BUG_ON(page->mapping != inode->i_mapping); 1157 if (!PageUptodate(page)) { 1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1159 if (ret) { 1160 unlock_page(page); 1161 goto err; 1162 } 1163 } 1164 unlock_page(page); 1165 } 1166 } 1167 if (page == NULL || !PageUptodate(page)) { 1168 ret = -EIO; 1169 goto err; 1170 } 1171 e4b->bd_buddy_page = page; 1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1173 mark_page_accessed(page); 1174 1175 BUG_ON(e4b->bd_bitmap_page == NULL); 1176 BUG_ON(e4b->bd_buddy_page == NULL); 1177 1178 return 0; 1179 1180 err: 1181 if (page) 1182 page_cache_release(page); 1183 if (e4b->bd_bitmap_page) 1184 page_cache_release(e4b->bd_bitmap_page); 1185 if (e4b->bd_buddy_page) 1186 page_cache_release(e4b->bd_buddy_page); 1187 e4b->bd_buddy = NULL; 1188 e4b->bd_bitmap = NULL; 1189 return ret; 1190 } 1191 1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1193 { 1194 if (e4b->bd_bitmap_page) 1195 page_cache_release(e4b->bd_bitmap_page); 1196 if (e4b->bd_buddy_page) 1197 page_cache_release(e4b->bd_buddy_page); 1198 } 1199 1200 1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1202 { 1203 int order = 1; 1204 void *bb; 1205 1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1208 1209 bb = e4b->bd_buddy; 1210 while (order <= e4b->bd_blkbits + 1) { 1211 block = block >> 1; 1212 if (!mb_test_bit(block, bb)) { 1213 /* this block is part of buddy of order 'order' */ 1214 return order; 1215 } 1216 bb += 1 << (e4b->bd_blkbits - order); 1217 order++; 1218 } 1219 return 0; 1220 } 1221 1222 static void mb_clear_bits(void *bm, int cur, int len) 1223 { 1224 __u32 *addr; 1225 1226 len = cur + len; 1227 while (cur < len) { 1228 if ((cur & 31) == 0 && (len - cur) >= 32) { 1229 /* fast path: clear whole word at once */ 1230 addr = bm + (cur >> 3); 1231 *addr = 0; 1232 cur += 32; 1233 continue; 1234 } 1235 mb_clear_bit(cur, bm); 1236 cur++; 1237 } 1238 } 1239 1240 void ext4_set_bits(void *bm, int cur, int len) 1241 { 1242 __u32 *addr; 1243 1244 len = cur + len; 1245 while (cur < len) { 1246 if ((cur & 31) == 0 && (len - cur) >= 32) { 1247 /* fast path: set whole word at once */ 1248 addr = bm + (cur >> 3); 1249 *addr = 0xffffffff; 1250 cur += 32; 1251 continue; 1252 } 1253 mb_set_bit(cur, bm); 1254 cur++; 1255 } 1256 } 1257 1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1259 int first, int count) 1260 { 1261 int block = 0; 1262 int max = 0; 1263 int order; 1264 void *buddy; 1265 void *buddy2; 1266 struct super_block *sb = e4b->bd_sb; 1267 1268 BUG_ON(first + count > (sb->s_blocksize << 3)); 1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1270 mb_check_buddy(e4b); 1271 mb_free_blocks_double(inode, e4b, first, count); 1272 1273 e4b->bd_info->bb_free += count; 1274 if (first < e4b->bd_info->bb_first_free) 1275 e4b->bd_info->bb_first_free = first; 1276 1277 /* let's maintain fragments counter */ 1278 if (first != 0) 1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap); 1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1281 max = !mb_test_bit(first + count, e4b->bd_bitmap); 1282 if (block && max) 1283 e4b->bd_info->bb_fragments--; 1284 else if (!block && !max) 1285 e4b->bd_info->bb_fragments++; 1286 1287 /* let's maintain buddy itself */ 1288 while (count-- > 0) { 1289 block = first++; 1290 order = 0; 1291 1292 if (!mb_test_bit(block, e4b->bd_bitmap)) { 1293 ext4_fsblk_t blocknr; 1294 1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1296 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1297 ext4_grp_locked_error(sb, e4b->bd_group, 1298 inode ? inode->i_ino : 0, 1299 blocknr, 1300 "freeing already freed block " 1301 "(bit %u)", block); 1302 } 1303 mb_clear_bit(block, e4b->bd_bitmap); 1304 e4b->bd_info->bb_counters[order]++; 1305 1306 /* start of the buddy */ 1307 buddy = mb_find_buddy(e4b, order, &max); 1308 1309 do { 1310 block &= ~1UL; 1311 if (mb_test_bit(block, buddy) || 1312 mb_test_bit(block + 1, buddy)) 1313 break; 1314 1315 /* both the buddies are free, try to coalesce them */ 1316 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1317 1318 if (!buddy2) 1319 break; 1320 1321 if (order > 0) { 1322 /* for special purposes, we don't set 1323 * free bits in bitmap */ 1324 mb_set_bit(block, buddy); 1325 mb_set_bit(block + 1, buddy); 1326 } 1327 e4b->bd_info->bb_counters[order]--; 1328 e4b->bd_info->bb_counters[order]--; 1329 1330 block = block >> 1; 1331 order++; 1332 e4b->bd_info->bb_counters[order]++; 1333 1334 mb_clear_bit(block, buddy2); 1335 buddy = buddy2; 1336 } while (1); 1337 } 1338 mb_set_largest_free_order(sb, e4b->bd_info); 1339 mb_check_buddy(e4b); 1340 } 1341 1342 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1343 int needed, struct ext4_free_extent *ex) 1344 { 1345 int next = block; 1346 int max; 1347 void *buddy; 1348 1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1350 BUG_ON(ex == NULL); 1351 1352 buddy = mb_find_buddy(e4b, order, &max); 1353 BUG_ON(buddy == NULL); 1354 BUG_ON(block >= max); 1355 if (mb_test_bit(block, buddy)) { 1356 ex->fe_len = 0; 1357 ex->fe_start = 0; 1358 ex->fe_group = 0; 1359 return 0; 1360 } 1361 1362 /* FIXME dorp order completely ? */ 1363 if (likely(order == 0)) { 1364 /* find actual order */ 1365 order = mb_find_order_for_block(e4b, block); 1366 block = block >> order; 1367 } 1368 1369 ex->fe_len = 1 << order; 1370 ex->fe_start = block << order; 1371 ex->fe_group = e4b->bd_group; 1372 1373 /* calc difference from given start */ 1374 next = next - ex->fe_start; 1375 ex->fe_len -= next; 1376 ex->fe_start += next; 1377 1378 while (needed > ex->fe_len && 1379 (buddy = mb_find_buddy(e4b, order, &max))) { 1380 1381 if (block + 1 >= max) 1382 break; 1383 1384 next = (block + 1) * (1 << order); 1385 if (mb_test_bit(next, e4b->bd_bitmap)) 1386 break; 1387 1388 order = mb_find_order_for_block(e4b, next); 1389 1390 block = next >> order; 1391 ex->fe_len += 1 << order; 1392 } 1393 1394 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1395 return ex->fe_len; 1396 } 1397 1398 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1399 { 1400 int ord; 1401 int mlen = 0; 1402 int max = 0; 1403 int cur; 1404 int start = ex->fe_start; 1405 int len = ex->fe_len; 1406 unsigned ret = 0; 1407 int len0 = len; 1408 void *buddy; 1409 1410 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1411 BUG_ON(e4b->bd_group != ex->fe_group); 1412 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1413 mb_check_buddy(e4b); 1414 mb_mark_used_double(e4b, start, len); 1415 1416 e4b->bd_info->bb_free -= len; 1417 if (e4b->bd_info->bb_first_free == start) 1418 e4b->bd_info->bb_first_free += len; 1419 1420 /* let's maintain fragments counter */ 1421 if (start != 0) 1422 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1423 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1424 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1425 if (mlen && max) 1426 e4b->bd_info->bb_fragments++; 1427 else if (!mlen && !max) 1428 e4b->bd_info->bb_fragments--; 1429 1430 /* let's maintain buddy itself */ 1431 while (len) { 1432 ord = mb_find_order_for_block(e4b, start); 1433 1434 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1435 /* the whole chunk may be allocated at once! */ 1436 mlen = 1 << ord; 1437 buddy = mb_find_buddy(e4b, ord, &max); 1438 BUG_ON((start >> ord) >= max); 1439 mb_set_bit(start >> ord, buddy); 1440 e4b->bd_info->bb_counters[ord]--; 1441 start += mlen; 1442 len -= mlen; 1443 BUG_ON(len < 0); 1444 continue; 1445 } 1446 1447 /* store for history */ 1448 if (ret == 0) 1449 ret = len | (ord << 16); 1450 1451 /* we have to split large buddy */ 1452 BUG_ON(ord <= 0); 1453 buddy = mb_find_buddy(e4b, ord, &max); 1454 mb_set_bit(start >> ord, buddy); 1455 e4b->bd_info->bb_counters[ord]--; 1456 1457 ord--; 1458 cur = (start >> ord) & ~1U; 1459 buddy = mb_find_buddy(e4b, ord, &max); 1460 mb_clear_bit(cur, buddy); 1461 mb_clear_bit(cur + 1, buddy); 1462 e4b->bd_info->bb_counters[ord]++; 1463 e4b->bd_info->bb_counters[ord]++; 1464 } 1465 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1466 1467 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1468 mb_check_buddy(e4b); 1469 1470 return ret; 1471 } 1472 1473 /* 1474 * Must be called under group lock! 1475 */ 1476 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1477 struct ext4_buddy *e4b) 1478 { 1479 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1480 int ret; 1481 1482 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1483 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1484 1485 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1486 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1487 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1488 1489 /* preallocation can change ac_b_ex, thus we store actually 1490 * allocated blocks for history */ 1491 ac->ac_f_ex = ac->ac_b_ex; 1492 1493 ac->ac_status = AC_STATUS_FOUND; 1494 ac->ac_tail = ret & 0xffff; 1495 ac->ac_buddy = ret >> 16; 1496 1497 /* 1498 * take the page reference. We want the page to be pinned 1499 * so that we don't get a ext4_mb_init_cache_call for this 1500 * group until we update the bitmap. That would mean we 1501 * double allocate blocks. The reference is dropped 1502 * in ext4_mb_release_context 1503 */ 1504 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1505 get_page(ac->ac_bitmap_page); 1506 ac->ac_buddy_page = e4b->bd_buddy_page; 1507 get_page(ac->ac_buddy_page); 1508 /* store last allocated for subsequent stream allocation */ 1509 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1510 spin_lock(&sbi->s_md_lock); 1511 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1512 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1513 spin_unlock(&sbi->s_md_lock); 1514 } 1515 } 1516 1517 /* 1518 * regular allocator, for general purposes allocation 1519 */ 1520 1521 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1522 struct ext4_buddy *e4b, 1523 int finish_group) 1524 { 1525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1526 struct ext4_free_extent *bex = &ac->ac_b_ex; 1527 struct ext4_free_extent *gex = &ac->ac_g_ex; 1528 struct ext4_free_extent ex; 1529 int max; 1530 1531 if (ac->ac_status == AC_STATUS_FOUND) 1532 return; 1533 /* 1534 * We don't want to scan for a whole year 1535 */ 1536 if (ac->ac_found > sbi->s_mb_max_to_scan && 1537 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1538 ac->ac_status = AC_STATUS_BREAK; 1539 return; 1540 } 1541 1542 /* 1543 * Haven't found good chunk so far, let's continue 1544 */ 1545 if (bex->fe_len < gex->fe_len) 1546 return; 1547 1548 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1549 && bex->fe_group == e4b->bd_group) { 1550 /* recheck chunk's availability - we don't know 1551 * when it was found (within this lock-unlock 1552 * period or not) */ 1553 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1554 if (max >= gex->fe_len) { 1555 ext4_mb_use_best_found(ac, e4b); 1556 return; 1557 } 1558 } 1559 } 1560 1561 /* 1562 * The routine checks whether found extent is good enough. If it is, 1563 * then the extent gets marked used and flag is set to the context 1564 * to stop scanning. Otherwise, the extent is compared with the 1565 * previous found extent and if new one is better, then it's stored 1566 * in the context. Later, the best found extent will be used, if 1567 * mballoc can't find good enough extent. 1568 * 1569 * FIXME: real allocation policy is to be designed yet! 1570 */ 1571 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1572 struct ext4_free_extent *ex, 1573 struct ext4_buddy *e4b) 1574 { 1575 struct ext4_free_extent *bex = &ac->ac_b_ex; 1576 struct ext4_free_extent *gex = &ac->ac_g_ex; 1577 1578 BUG_ON(ex->fe_len <= 0); 1579 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1580 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1581 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1582 1583 ac->ac_found++; 1584 1585 /* 1586 * The special case - take what you catch first 1587 */ 1588 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1589 *bex = *ex; 1590 ext4_mb_use_best_found(ac, e4b); 1591 return; 1592 } 1593 1594 /* 1595 * Let's check whether the chuck is good enough 1596 */ 1597 if (ex->fe_len == gex->fe_len) { 1598 *bex = *ex; 1599 ext4_mb_use_best_found(ac, e4b); 1600 return; 1601 } 1602 1603 /* 1604 * If this is first found extent, just store it in the context 1605 */ 1606 if (bex->fe_len == 0) { 1607 *bex = *ex; 1608 return; 1609 } 1610 1611 /* 1612 * If new found extent is better, store it in the context 1613 */ 1614 if (bex->fe_len < gex->fe_len) { 1615 /* if the request isn't satisfied, any found extent 1616 * larger than previous best one is better */ 1617 if (ex->fe_len > bex->fe_len) 1618 *bex = *ex; 1619 } else if (ex->fe_len > gex->fe_len) { 1620 /* if the request is satisfied, then we try to find 1621 * an extent that still satisfy the request, but is 1622 * smaller than previous one */ 1623 if (ex->fe_len < bex->fe_len) 1624 *bex = *ex; 1625 } 1626 1627 ext4_mb_check_limits(ac, e4b, 0); 1628 } 1629 1630 static noinline_for_stack 1631 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1632 struct ext4_buddy *e4b) 1633 { 1634 struct ext4_free_extent ex = ac->ac_b_ex; 1635 ext4_group_t group = ex.fe_group; 1636 int max; 1637 int err; 1638 1639 BUG_ON(ex.fe_len <= 0); 1640 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1641 if (err) 1642 return err; 1643 1644 ext4_lock_group(ac->ac_sb, group); 1645 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1646 1647 if (max > 0) { 1648 ac->ac_b_ex = ex; 1649 ext4_mb_use_best_found(ac, e4b); 1650 } 1651 1652 ext4_unlock_group(ac->ac_sb, group); 1653 ext4_mb_unload_buddy(e4b); 1654 1655 return 0; 1656 } 1657 1658 static noinline_for_stack 1659 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1660 struct ext4_buddy *e4b) 1661 { 1662 ext4_group_t group = ac->ac_g_ex.fe_group; 1663 int max; 1664 int err; 1665 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1666 struct ext4_free_extent ex; 1667 1668 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1669 return 0; 1670 1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1672 if (err) 1673 return err; 1674 1675 ext4_lock_group(ac->ac_sb, group); 1676 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1677 ac->ac_g_ex.fe_len, &ex); 1678 1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1680 ext4_fsblk_t start; 1681 1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1683 ex.fe_start; 1684 /* use do_div to get remainder (would be 64-bit modulo) */ 1685 if (do_div(start, sbi->s_stripe) == 0) { 1686 ac->ac_found++; 1687 ac->ac_b_ex = ex; 1688 ext4_mb_use_best_found(ac, e4b); 1689 } 1690 } else if (max >= ac->ac_g_ex.fe_len) { 1691 BUG_ON(ex.fe_len <= 0); 1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1694 ac->ac_found++; 1695 ac->ac_b_ex = ex; 1696 ext4_mb_use_best_found(ac, e4b); 1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1698 /* Sometimes, caller may want to merge even small 1699 * number of blocks to an existing extent */ 1700 BUG_ON(ex.fe_len <= 0); 1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1703 ac->ac_found++; 1704 ac->ac_b_ex = ex; 1705 ext4_mb_use_best_found(ac, e4b); 1706 } 1707 ext4_unlock_group(ac->ac_sb, group); 1708 ext4_mb_unload_buddy(e4b); 1709 1710 return 0; 1711 } 1712 1713 /* 1714 * The routine scans buddy structures (not bitmap!) from given order 1715 * to max order and tries to find big enough chunk to satisfy the req 1716 */ 1717 static noinline_for_stack 1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1719 struct ext4_buddy *e4b) 1720 { 1721 struct super_block *sb = ac->ac_sb; 1722 struct ext4_group_info *grp = e4b->bd_info; 1723 void *buddy; 1724 int i; 1725 int k; 1726 int max; 1727 1728 BUG_ON(ac->ac_2order <= 0); 1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1730 if (grp->bb_counters[i] == 0) 1731 continue; 1732 1733 buddy = mb_find_buddy(e4b, i, &max); 1734 BUG_ON(buddy == NULL); 1735 1736 k = mb_find_next_zero_bit(buddy, max, 0); 1737 BUG_ON(k >= max); 1738 1739 ac->ac_found++; 1740 1741 ac->ac_b_ex.fe_len = 1 << i; 1742 ac->ac_b_ex.fe_start = k << i; 1743 ac->ac_b_ex.fe_group = e4b->bd_group; 1744 1745 ext4_mb_use_best_found(ac, e4b); 1746 1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1748 1749 if (EXT4_SB(sb)->s_mb_stats) 1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1751 1752 break; 1753 } 1754 } 1755 1756 /* 1757 * The routine scans the group and measures all found extents. 1758 * In order to optimize scanning, caller must pass number of 1759 * free blocks in the group, so the routine can know upper limit. 1760 */ 1761 static noinline_for_stack 1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1763 struct ext4_buddy *e4b) 1764 { 1765 struct super_block *sb = ac->ac_sb; 1766 void *bitmap = e4b->bd_bitmap; 1767 struct ext4_free_extent ex; 1768 int i; 1769 int free; 1770 1771 free = e4b->bd_info->bb_free; 1772 BUG_ON(free <= 0); 1773 1774 i = e4b->bd_info->bb_first_free; 1775 1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1777 i = mb_find_next_zero_bit(bitmap, 1778 EXT4_CLUSTERS_PER_GROUP(sb), i); 1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1780 /* 1781 * IF we have corrupt bitmap, we won't find any 1782 * free blocks even though group info says we 1783 * we have free blocks 1784 */ 1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1786 "%d free clusters as per " 1787 "group info. But bitmap says 0", 1788 free); 1789 break; 1790 } 1791 1792 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1793 BUG_ON(ex.fe_len <= 0); 1794 if (free < ex.fe_len) { 1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1796 "%d free clusters as per " 1797 "group info. But got %d blocks", 1798 free, ex.fe_len); 1799 /* 1800 * The number of free blocks differs. This mostly 1801 * indicate that the bitmap is corrupt. So exit 1802 * without claiming the space. 1803 */ 1804 break; 1805 } 1806 1807 ext4_mb_measure_extent(ac, &ex, e4b); 1808 1809 i += ex.fe_len; 1810 free -= ex.fe_len; 1811 } 1812 1813 ext4_mb_check_limits(ac, e4b, 1); 1814 } 1815 1816 /* 1817 * This is a special case for storages like raid5 1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1819 */ 1820 static noinline_for_stack 1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1822 struct ext4_buddy *e4b) 1823 { 1824 struct super_block *sb = ac->ac_sb; 1825 struct ext4_sb_info *sbi = EXT4_SB(sb); 1826 void *bitmap = e4b->bd_bitmap; 1827 struct ext4_free_extent ex; 1828 ext4_fsblk_t first_group_block; 1829 ext4_fsblk_t a; 1830 ext4_grpblk_t i; 1831 int max; 1832 1833 BUG_ON(sbi->s_stripe == 0); 1834 1835 /* find first stripe-aligned block in group */ 1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1837 1838 a = first_group_block + sbi->s_stripe - 1; 1839 do_div(a, sbi->s_stripe); 1840 i = (a * sbi->s_stripe) - first_group_block; 1841 1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1843 if (!mb_test_bit(i, bitmap)) { 1844 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1845 if (max >= sbi->s_stripe) { 1846 ac->ac_found++; 1847 ac->ac_b_ex = ex; 1848 ext4_mb_use_best_found(ac, e4b); 1849 break; 1850 } 1851 } 1852 i += sbi->s_stripe; 1853 } 1854 } 1855 1856 /* This is now called BEFORE we load the buddy bitmap. */ 1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1858 ext4_group_t group, int cr) 1859 { 1860 unsigned free, fragments; 1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1863 1864 BUG_ON(cr < 0 || cr >= 4); 1865 1866 /* We only do this if the grp has never been initialized */ 1867 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1868 int ret = ext4_mb_init_group(ac->ac_sb, group); 1869 if (ret) 1870 return 0; 1871 } 1872 1873 free = grp->bb_free; 1874 fragments = grp->bb_fragments; 1875 if (free == 0) 1876 return 0; 1877 if (fragments == 0) 1878 return 0; 1879 1880 switch (cr) { 1881 case 0: 1882 BUG_ON(ac->ac_2order == 0); 1883 1884 if (grp->bb_largest_free_order < ac->ac_2order) 1885 return 0; 1886 1887 /* Avoid using the first bg of a flexgroup for data files */ 1888 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1889 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1890 ((group % flex_size) == 0)) 1891 return 0; 1892 1893 return 1; 1894 case 1: 1895 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1896 return 1; 1897 break; 1898 case 2: 1899 if (free >= ac->ac_g_ex.fe_len) 1900 return 1; 1901 break; 1902 case 3: 1903 return 1; 1904 default: 1905 BUG(); 1906 } 1907 1908 return 0; 1909 } 1910 1911 static noinline_for_stack int 1912 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1913 { 1914 ext4_group_t ngroups, group, i; 1915 int cr; 1916 int err = 0; 1917 struct ext4_sb_info *sbi; 1918 struct super_block *sb; 1919 struct ext4_buddy e4b; 1920 1921 sb = ac->ac_sb; 1922 sbi = EXT4_SB(sb); 1923 ngroups = ext4_get_groups_count(sb); 1924 /* non-extent files are limited to low blocks/groups */ 1925 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1926 ngroups = sbi->s_blockfile_groups; 1927 1928 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1929 1930 /* first, try the goal */ 1931 err = ext4_mb_find_by_goal(ac, &e4b); 1932 if (err || ac->ac_status == AC_STATUS_FOUND) 1933 goto out; 1934 1935 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1936 goto out; 1937 1938 /* 1939 * ac->ac2_order is set only if the fe_len is a power of 2 1940 * if ac2_order is set we also set criteria to 0 so that we 1941 * try exact allocation using buddy. 1942 */ 1943 i = fls(ac->ac_g_ex.fe_len); 1944 ac->ac_2order = 0; 1945 /* 1946 * We search using buddy data only if the order of the request 1947 * is greater than equal to the sbi_s_mb_order2_reqs 1948 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1949 */ 1950 if (i >= sbi->s_mb_order2_reqs) { 1951 /* 1952 * This should tell if fe_len is exactly power of 2 1953 */ 1954 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1955 ac->ac_2order = i - 1; 1956 } 1957 1958 /* if stream allocation is enabled, use global goal */ 1959 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1960 /* TBD: may be hot point */ 1961 spin_lock(&sbi->s_md_lock); 1962 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1963 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1964 spin_unlock(&sbi->s_md_lock); 1965 } 1966 1967 /* Let's just scan groups to find more-less suitable blocks */ 1968 cr = ac->ac_2order ? 0 : 1; 1969 /* 1970 * cr == 0 try to get exact allocation, 1971 * cr == 3 try to get anything 1972 */ 1973 repeat: 1974 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1975 ac->ac_criteria = cr; 1976 /* 1977 * searching for the right group start 1978 * from the goal value specified 1979 */ 1980 group = ac->ac_g_ex.fe_group; 1981 1982 for (i = 0; i < ngroups; group++, i++) { 1983 if (group == ngroups) 1984 group = 0; 1985 1986 /* This now checks without needing the buddy page */ 1987 if (!ext4_mb_good_group(ac, group, cr)) 1988 continue; 1989 1990 err = ext4_mb_load_buddy(sb, group, &e4b); 1991 if (err) 1992 goto out; 1993 1994 ext4_lock_group(sb, group); 1995 1996 /* 1997 * We need to check again after locking the 1998 * block group 1999 */ 2000 if (!ext4_mb_good_group(ac, group, cr)) { 2001 ext4_unlock_group(sb, group); 2002 ext4_mb_unload_buddy(&e4b); 2003 continue; 2004 } 2005 2006 ac->ac_groups_scanned++; 2007 if (cr == 0) 2008 ext4_mb_simple_scan_group(ac, &e4b); 2009 else if (cr == 1 && sbi->s_stripe && 2010 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2011 ext4_mb_scan_aligned(ac, &e4b); 2012 else 2013 ext4_mb_complex_scan_group(ac, &e4b); 2014 2015 ext4_unlock_group(sb, group); 2016 ext4_mb_unload_buddy(&e4b); 2017 2018 if (ac->ac_status != AC_STATUS_CONTINUE) 2019 break; 2020 } 2021 } 2022 2023 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2024 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2025 /* 2026 * We've been searching too long. Let's try to allocate 2027 * the best chunk we've found so far 2028 */ 2029 2030 ext4_mb_try_best_found(ac, &e4b); 2031 if (ac->ac_status != AC_STATUS_FOUND) { 2032 /* 2033 * Someone more lucky has already allocated it. 2034 * The only thing we can do is just take first 2035 * found block(s) 2036 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2037 */ 2038 ac->ac_b_ex.fe_group = 0; 2039 ac->ac_b_ex.fe_start = 0; 2040 ac->ac_b_ex.fe_len = 0; 2041 ac->ac_status = AC_STATUS_CONTINUE; 2042 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2043 cr = 3; 2044 atomic_inc(&sbi->s_mb_lost_chunks); 2045 goto repeat; 2046 } 2047 } 2048 out: 2049 return err; 2050 } 2051 2052 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2053 { 2054 struct super_block *sb = seq->private; 2055 ext4_group_t group; 2056 2057 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2058 return NULL; 2059 group = *pos + 1; 2060 return (void *) ((unsigned long) group); 2061 } 2062 2063 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2064 { 2065 struct super_block *sb = seq->private; 2066 ext4_group_t group; 2067 2068 ++*pos; 2069 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2070 return NULL; 2071 group = *pos + 1; 2072 return (void *) ((unsigned long) group); 2073 } 2074 2075 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2076 { 2077 struct super_block *sb = seq->private; 2078 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2079 int i; 2080 int err; 2081 struct ext4_buddy e4b; 2082 struct sg { 2083 struct ext4_group_info info; 2084 ext4_grpblk_t counters[16]; 2085 } sg; 2086 2087 group--; 2088 if (group == 0) 2089 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2090 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2091 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2092 "group", "free", "frags", "first", 2093 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2094 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2095 2096 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2097 sizeof(struct ext4_group_info); 2098 err = ext4_mb_load_buddy(sb, group, &e4b); 2099 if (err) { 2100 seq_printf(seq, "#%-5u: I/O error\n", group); 2101 return 0; 2102 } 2103 ext4_lock_group(sb, group); 2104 memcpy(&sg, ext4_get_group_info(sb, group), i); 2105 ext4_unlock_group(sb, group); 2106 ext4_mb_unload_buddy(&e4b); 2107 2108 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2109 sg.info.bb_fragments, sg.info.bb_first_free); 2110 for (i = 0; i <= 13; i++) 2111 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2112 sg.info.bb_counters[i] : 0); 2113 seq_printf(seq, " ]\n"); 2114 2115 return 0; 2116 } 2117 2118 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2119 { 2120 } 2121 2122 static const struct seq_operations ext4_mb_seq_groups_ops = { 2123 .start = ext4_mb_seq_groups_start, 2124 .next = ext4_mb_seq_groups_next, 2125 .stop = ext4_mb_seq_groups_stop, 2126 .show = ext4_mb_seq_groups_show, 2127 }; 2128 2129 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2130 { 2131 struct super_block *sb = PDE(inode)->data; 2132 int rc; 2133 2134 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2135 if (rc == 0) { 2136 struct seq_file *m = file->private_data; 2137 m->private = sb; 2138 } 2139 return rc; 2140 2141 } 2142 2143 static const struct file_operations ext4_mb_seq_groups_fops = { 2144 .owner = THIS_MODULE, 2145 .open = ext4_mb_seq_groups_open, 2146 .read = seq_read, 2147 .llseek = seq_lseek, 2148 .release = seq_release, 2149 }; 2150 2151 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2152 { 2153 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2154 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2155 2156 BUG_ON(!cachep); 2157 return cachep; 2158 } 2159 2160 /* Create and initialize ext4_group_info data for the given group. */ 2161 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2162 struct ext4_group_desc *desc) 2163 { 2164 int i; 2165 int metalen = 0; 2166 struct ext4_sb_info *sbi = EXT4_SB(sb); 2167 struct ext4_group_info **meta_group_info; 2168 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2169 2170 /* 2171 * First check if this group is the first of a reserved block. 2172 * If it's true, we have to allocate a new table of pointers 2173 * to ext4_group_info structures 2174 */ 2175 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2176 metalen = sizeof(*meta_group_info) << 2177 EXT4_DESC_PER_BLOCK_BITS(sb); 2178 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2179 if (meta_group_info == NULL) { 2180 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2181 "for a buddy group"); 2182 goto exit_meta_group_info; 2183 } 2184 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2185 meta_group_info; 2186 } 2187 2188 meta_group_info = 2189 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2190 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2191 2192 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL); 2193 if (meta_group_info[i] == NULL) { 2194 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2195 goto exit_group_info; 2196 } 2197 memset(meta_group_info[i], 0, kmem_cache_size(cachep)); 2198 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2199 &(meta_group_info[i]->bb_state)); 2200 2201 /* 2202 * initialize bb_free to be able to skip 2203 * empty groups without initialization 2204 */ 2205 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2206 meta_group_info[i]->bb_free = 2207 ext4_free_clusters_after_init(sb, group, desc); 2208 } else { 2209 meta_group_info[i]->bb_free = 2210 ext4_free_group_clusters(sb, desc); 2211 } 2212 2213 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2214 init_rwsem(&meta_group_info[i]->alloc_sem); 2215 meta_group_info[i]->bb_free_root = RB_ROOT; 2216 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2217 2218 #ifdef DOUBLE_CHECK 2219 { 2220 struct buffer_head *bh; 2221 meta_group_info[i]->bb_bitmap = 2222 kmalloc(sb->s_blocksize, GFP_KERNEL); 2223 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2224 bh = ext4_read_block_bitmap(sb, group); 2225 BUG_ON(bh == NULL); 2226 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2227 sb->s_blocksize); 2228 put_bh(bh); 2229 } 2230 #endif 2231 2232 return 0; 2233 2234 exit_group_info: 2235 /* If a meta_group_info table has been allocated, release it now */ 2236 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2237 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2238 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2239 } 2240 exit_meta_group_info: 2241 return -ENOMEM; 2242 } /* ext4_mb_add_groupinfo */ 2243 2244 static int ext4_mb_init_backend(struct super_block *sb) 2245 { 2246 ext4_group_t ngroups = ext4_get_groups_count(sb); 2247 ext4_group_t i; 2248 struct ext4_sb_info *sbi = EXT4_SB(sb); 2249 struct ext4_super_block *es = sbi->s_es; 2250 int num_meta_group_infos; 2251 int num_meta_group_infos_max; 2252 int array_size; 2253 struct ext4_group_desc *desc; 2254 struct kmem_cache *cachep; 2255 2256 /* This is the number of blocks used by GDT */ 2257 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 2258 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2259 2260 /* 2261 * This is the total number of blocks used by GDT including 2262 * the number of reserved blocks for GDT. 2263 * The s_group_info array is allocated with this value 2264 * to allow a clean online resize without a complex 2265 * manipulation of pointer. 2266 * The drawback is the unused memory when no resize 2267 * occurs but it's very low in terms of pages 2268 * (see comments below) 2269 * Need to handle this properly when META_BG resizing is allowed 2270 */ 2271 num_meta_group_infos_max = num_meta_group_infos + 2272 le16_to_cpu(es->s_reserved_gdt_blocks); 2273 2274 /* 2275 * array_size is the size of s_group_info array. We round it 2276 * to the next power of two because this approximation is done 2277 * internally by kmalloc so we can have some more memory 2278 * for free here (e.g. may be used for META_BG resize). 2279 */ 2280 array_size = 1; 2281 while (array_size < sizeof(*sbi->s_group_info) * 2282 num_meta_group_infos_max) 2283 array_size = array_size << 1; 2284 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2285 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2286 * So a two level scheme suffices for now. */ 2287 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL); 2288 if (sbi->s_group_info == NULL) { 2289 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2290 return -ENOMEM; 2291 } 2292 sbi->s_buddy_cache = new_inode(sb); 2293 if (sbi->s_buddy_cache == NULL) { 2294 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2295 goto err_freesgi; 2296 } 2297 /* To avoid potentially colliding with an valid on-disk inode number, 2298 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2299 * not in the inode hash, so it should never be found by iget(), but 2300 * this will avoid confusion if it ever shows up during debugging. */ 2301 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2302 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2303 for (i = 0; i < ngroups; i++) { 2304 desc = ext4_get_group_desc(sb, i, NULL); 2305 if (desc == NULL) { 2306 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2307 goto err_freebuddy; 2308 } 2309 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2310 goto err_freebuddy; 2311 } 2312 2313 return 0; 2314 2315 err_freebuddy: 2316 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2317 while (i-- > 0) 2318 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2319 i = num_meta_group_infos; 2320 while (i-- > 0) 2321 kfree(sbi->s_group_info[i]); 2322 iput(sbi->s_buddy_cache); 2323 err_freesgi: 2324 ext4_kvfree(sbi->s_group_info); 2325 return -ENOMEM; 2326 } 2327 2328 static void ext4_groupinfo_destroy_slabs(void) 2329 { 2330 int i; 2331 2332 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2333 if (ext4_groupinfo_caches[i]) 2334 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2335 ext4_groupinfo_caches[i] = NULL; 2336 } 2337 } 2338 2339 static int ext4_groupinfo_create_slab(size_t size) 2340 { 2341 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2342 int slab_size; 2343 int blocksize_bits = order_base_2(size); 2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2345 struct kmem_cache *cachep; 2346 2347 if (cache_index >= NR_GRPINFO_CACHES) 2348 return -EINVAL; 2349 2350 if (unlikely(cache_index < 0)) 2351 cache_index = 0; 2352 2353 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2354 if (ext4_groupinfo_caches[cache_index]) { 2355 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2356 return 0; /* Already created */ 2357 } 2358 2359 slab_size = offsetof(struct ext4_group_info, 2360 bb_counters[blocksize_bits + 2]); 2361 2362 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2363 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2364 NULL); 2365 2366 ext4_groupinfo_caches[cache_index] = cachep; 2367 2368 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2369 if (!cachep) { 2370 printk(KERN_EMERG 2371 "EXT4-fs: no memory for groupinfo slab cache\n"); 2372 return -ENOMEM; 2373 } 2374 2375 return 0; 2376 } 2377 2378 int ext4_mb_init(struct super_block *sb) 2379 { 2380 struct ext4_sb_info *sbi = EXT4_SB(sb); 2381 unsigned i, j; 2382 unsigned offset; 2383 unsigned max; 2384 int ret; 2385 2386 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2387 2388 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2389 if (sbi->s_mb_offsets == NULL) { 2390 ret = -ENOMEM; 2391 goto out; 2392 } 2393 2394 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2395 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2396 if (sbi->s_mb_maxs == NULL) { 2397 ret = -ENOMEM; 2398 goto out; 2399 } 2400 2401 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2402 if (ret < 0) 2403 goto out; 2404 2405 /* order 0 is regular bitmap */ 2406 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2407 sbi->s_mb_offsets[0] = 0; 2408 2409 i = 1; 2410 offset = 0; 2411 max = sb->s_blocksize << 2; 2412 do { 2413 sbi->s_mb_offsets[i] = offset; 2414 sbi->s_mb_maxs[i] = max; 2415 offset += 1 << (sb->s_blocksize_bits - i); 2416 max = max >> 1; 2417 i++; 2418 } while (i <= sb->s_blocksize_bits + 1); 2419 2420 spin_lock_init(&sbi->s_md_lock); 2421 spin_lock_init(&sbi->s_bal_lock); 2422 2423 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2424 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2425 sbi->s_mb_stats = MB_DEFAULT_STATS; 2426 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2427 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2428 /* 2429 * The default group preallocation is 512, which for 4k block 2430 * sizes translates to 2 megabytes. However for bigalloc file 2431 * systems, this is probably too big (i.e, if the cluster size 2432 * is 1 megabyte, then group preallocation size becomes half a 2433 * gigabyte!). As a default, we will keep a two megabyte 2434 * group pralloc size for cluster sizes up to 64k, and after 2435 * that, we will force a minimum group preallocation size of 2436 * 32 clusters. This translates to 8 megs when the cluster 2437 * size is 256k, and 32 megs when the cluster size is 1 meg, 2438 * which seems reasonable as a default. 2439 */ 2440 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2441 sbi->s_cluster_bits, 32); 2442 /* 2443 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2444 * to the lowest multiple of s_stripe which is bigger than 2445 * the s_mb_group_prealloc as determined above. We want 2446 * the preallocation size to be an exact multiple of the 2447 * RAID stripe size so that preallocations don't fragment 2448 * the stripes. 2449 */ 2450 if (sbi->s_stripe > 1) { 2451 sbi->s_mb_group_prealloc = roundup( 2452 sbi->s_mb_group_prealloc, sbi->s_stripe); 2453 } 2454 2455 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2456 if (sbi->s_locality_groups == NULL) { 2457 ret = -ENOMEM; 2458 goto out_free_groupinfo_slab; 2459 } 2460 for_each_possible_cpu(i) { 2461 struct ext4_locality_group *lg; 2462 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2463 mutex_init(&lg->lg_mutex); 2464 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2465 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2466 spin_lock_init(&lg->lg_prealloc_lock); 2467 } 2468 2469 /* init file for buddy data */ 2470 ret = ext4_mb_init_backend(sb); 2471 if (ret != 0) 2472 goto out_free_locality_groups; 2473 2474 if (sbi->s_proc) 2475 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2476 &ext4_mb_seq_groups_fops, sb); 2477 2478 return 0; 2479 2480 out_free_locality_groups: 2481 free_percpu(sbi->s_locality_groups); 2482 sbi->s_locality_groups = NULL; 2483 out_free_groupinfo_slab: 2484 ext4_groupinfo_destroy_slabs(); 2485 out: 2486 kfree(sbi->s_mb_offsets); 2487 sbi->s_mb_offsets = NULL; 2488 kfree(sbi->s_mb_maxs); 2489 sbi->s_mb_maxs = NULL; 2490 return ret; 2491 } 2492 2493 /* need to called with the ext4 group lock held */ 2494 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2495 { 2496 struct ext4_prealloc_space *pa; 2497 struct list_head *cur, *tmp; 2498 int count = 0; 2499 2500 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2501 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2502 list_del(&pa->pa_group_list); 2503 count++; 2504 kmem_cache_free(ext4_pspace_cachep, pa); 2505 } 2506 if (count) 2507 mb_debug(1, "mballoc: %u PAs left\n", count); 2508 2509 } 2510 2511 int ext4_mb_release(struct super_block *sb) 2512 { 2513 ext4_group_t ngroups = ext4_get_groups_count(sb); 2514 ext4_group_t i; 2515 int num_meta_group_infos; 2516 struct ext4_group_info *grinfo; 2517 struct ext4_sb_info *sbi = EXT4_SB(sb); 2518 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2519 2520 if (sbi->s_group_info) { 2521 for (i = 0; i < ngroups; i++) { 2522 grinfo = ext4_get_group_info(sb, i); 2523 #ifdef DOUBLE_CHECK 2524 kfree(grinfo->bb_bitmap); 2525 #endif 2526 ext4_lock_group(sb, i); 2527 ext4_mb_cleanup_pa(grinfo); 2528 ext4_unlock_group(sb, i); 2529 kmem_cache_free(cachep, grinfo); 2530 } 2531 num_meta_group_infos = (ngroups + 2532 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2533 EXT4_DESC_PER_BLOCK_BITS(sb); 2534 for (i = 0; i < num_meta_group_infos; i++) 2535 kfree(sbi->s_group_info[i]); 2536 ext4_kvfree(sbi->s_group_info); 2537 } 2538 kfree(sbi->s_mb_offsets); 2539 kfree(sbi->s_mb_maxs); 2540 if (sbi->s_buddy_cache) 2541 iput(sbi->s_buddy_cache); 2542 if (sbi->s_mb_stats) { 2543 ext4_msg(sb, KERN_INFO, 2544 "mballoc: %u blocks %u reqs (%u success)", 2545 atomic_read(&sbi->s_bal_allocated), 2546 atomic_read(&sbi->s_bal_reqs), 2547 atomic_read(&sbi->s_bal_success)); 2548 ext4_msg(sb, KERN_INFO, 2549 "mballoc: %u extents scanned, %u goal hits, " 2550 "%u 2^N hits, %u breaks, %u lost", 2551 atomic_read(&sbi->s_bal_ex_scanned), 2552 atomic_read(&sbi->s_bal_goals), 2553 atomic_read(&sbi->s_bal_2orders), 2554 atomic_read(&sbi->s_bal_breaks), 2555 atomic_read(&sbi->s_mb_lost_chunks)); 2556 ext4_msg(sb, KERN_INFO, 2557 "mballoc: %lu generated and it took %Lu", 2558 sbi->s_mb_buddies_generated, 2559 sbi->s_mb_generation_time); 2560 ext4_msg(sb, KERN_INFO, 2561 "mballoc: %u preallocated, %u discarded", 2562 atomic_read(&sbi->s_mb_preallocated), 2563 atomic_read(&sbi->s_mb_discarded)); 2564 } 2565 2566 free_percpu(sbi->s_locality_groups); 2567 if (sbi->s_proc) 2568 remove_proc_entry("mb_groups", sbi->s_proc); 2569 2570 return 0; 2571 } 2572 2573 static inline int ext4_issue_discard(struct super_block *sb, 2574 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2575 { 2576 ext4_fsblk_t discard_block; 2577 2578 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2579 ext4_group_first_block_no(sb, block_group)); 2580 count = EXT4_C2B(EXT4_SB(sb), count); 2581 trace_ext4_discard_blocks(sb, 2582 (unsigned long long) discard_block, count); 2583 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2584 } 2585 2586 /* 2587 * This function is called by the jbd2 layer once the commit has finished, 2588 * so we know we can free the blocks that were released with that commit. 2589 */ 2590 static void ext4_free_data_callback(struct super_block *sb, 2591 struct ext4_journal_cb_entry *jce, 2592 int rc) 2593 { 2594 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2595 struct ext4_buddy e4b; 2596 struct ext4_group_info *db; 2597 int err, count = 0, count2 = 0; 2598 2599 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2600 entry->efd_count, entry->efd_group, entry); 2601 2602 if (test_opt(sb, DISCARD)) 2603 ext4_issue_discard(sb, entry->efd_group, 2604 entry->efd_start_cluster, entry->efd_count); 2605 2606 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2607 /* we expect to find existing buddy because it's pinned */ 2608 BUG_ON(err != 0); 2609 2610 2611 db = e4b.bd_info; 2612 /* there are blocks to put in buddy to make them really free */ 2613 count += entry->efd_count; 2614 count2++; 2615 ext4_lock_group(sb, entry->efd_group); 2616 /* Take it out of per group rb tree */ 2617 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2618 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2619 2620 /* 2621 * Clear the trimmed flag for the group so that the next 2622 * ext4_trim_fs can trim it. 2623 * If the volume is mounted with -o discard, online discard 2624 * is supported and the free blocks will be trimmed online. 2625 */ 2626 if (!test_opt(sb, DISCARD)) 2627 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2628 2629 if (!db->bb_free_root.rb_node) { 2630 /* No more items in the per group rb tree 2631 * balance refcounts from ext4_mb_free_metadata() 2632 */ 2633 page_cache_release(e4b.bd_buddy_page); 2634 page_cache_release(e4b.bd_bitmap_page); 2635 } 2636 ext4_unlock_group(sb, entry->efd_group); 2637 kmem_cache_free(ext4_free_data_cachep, entry); 2638 ext4_mb_unload_buddy(&e4b); 2639 2640 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2641 } 2642 2643 #ifdef CONFIG_EXT4_DEBUG 2644 u8 mb_enable_debug __read_mostly; 2645 2646 static struct dentry *debugfs_dir; 2647 static struct dentry *debugfs_debug; 2648 2649 static void __init ext4_create_debugfs_entry(void) 2650 { 2651 debugfs_dir = debugfs_create_dir("ext4", NULL); 2652 if (debugfs_dir) 2653 debugfs_debug = debugfs_create_u8("mballoc-debug", 2654 S_IRUGO | S_IWUSR, 2655 debugfs_dir, 2656 &mb_enable_debug); 2657 } 2658 2659 static void ext4_remove_debugfs_entry(void) 2660 { 2661 debugfs_remove(debugfs_debug); 2662 debugfs_remove(debugfs_dir); 2663 } 2664 2665 #else 2666 2667 static void __init ext4_create_debugfs_entry(void) 2668 { 2669 } 2670 2671 static void ext4_remove_debugfs_entry(void) 2672 { 2673 } 2674 2675 #endif 2676 2677 int __init ext4_init_mballoc(void) 2678 { 2679 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2680 SLAB_RECLAIM_ACCOUNT); 2681 if (ext4_pspace_cachep == NULL) 2682 return -ENOMEM; 2683 2684 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2685 SLAB_RECLAIM_ACCOUNT); 2686 if (ext4_ac_cachep == NULL) { 2687 kmem_cache_destroy(ext4_pspace_cachep); 2688 return -ENOMEM; 2689 } 2690 2691 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2692 SLAB_RECLAIM_ACCOUNT); 2693 if (ext4_free_data_cachep == NULL) { 2694 kmem_cache_destroy(ext4_pspace_cachep); 2695 kmem_cache_destroy(ext4_ac_cachep); 2696 return -ENOMEM; 2697 } 2698 ext4_create_debugfs_entry(); 2699 return 0; 2700 } 2701 2702 void ext4_exit_mballoc(void) 2703 { 2704 /* 2705 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2706 * before destroying the slab cache. 2707 */ 2708 rcu_barrier(); 2709 kmem_cache_destroy(ext4_pspace_cachep); 2710 kmem_cache_destroy(ext4_ac_cachep); 2711 kmem_cache_destroy(ext4_free_data_cachep); 2712 ext4_groupinfo_destroy_slabs(); 2713 ext4_remove_debugfs_entry(); 2714 } 2715 2716 2717 /* 2718 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2719 * Returns 0 if success or error code 2720 */ 2721 static noinline_for_stack int 2722 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2723 handle_t *handle, unsigned int reserv_clstrs) 2724 { 2725 struct buffer_head *bitmap_bh = NULL; 2726 struct ext4_group_desc *gdp; 2727 struct buffer_head *gdp_bh; 2728 struct ext4_sb_info *sbi; 2729 struct super_block *sb; 2730 ext4_fsblk_t block; 2731 int err, len; 2732 2733 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2734 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2735 2736 sb = ac->ac_sb; 2737 sbi = EXT4_SB(sb); 2738 2739 err = -EIO; 2740 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2741 if (!bitmap_bh) 2742 goto out_err; 2743 2744 err = ext4_journal_get_write_access(handle, bitmap_bh); 2745 if (err) 2746 goto out_err; 2747 2748 err = -EIO; 2749 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2750 if (!gdp) 2751 goto out_err; 2752 2753 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2754 ext4_free_group_clusters(sb, gdp)); 2755 2756 err = ext4_journal_get_write_access(handle, gdp_bh); 2757 if (err) 2758 goto out_err; 2759 2760 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2761 2762 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2763 if (!ext4_data_block_valid(sbi, block, len)) { 2764 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2765 "fs metadata", block, block+len); 2766 /* File system mounted not to panic on error 2767 * Fix the bitmap and repeat the block allocation 2768 * We leak some of the blocks here. 2769 */ 2770 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2771 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2772 ac->ac_b_ex.fe_len); 2773 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2774 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2775 if (!err) 2776 err = -EAGAIN; 2777 goto out_err; 2778 } 2779 2780 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2781 #ifdef AGGRESSIVE_CHECK 2782 { 2783 int i; 2784 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2785 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2786 bitmap_bh->b_data)); 2787 } 2788 } 2789 #endif 2790 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2791 ac->ac_b_ex.fe_len); 2792 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2793 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2794 ext4_free_group_clusters_set(sb, gdp, 2795 ext4_free_clusters_after_init(sb, 2796 ac->ac_b_ex.fe_group, gdp)); 2797 } 2798 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2799 ext4_free_group_clusters_set(sb, gdp, len); 2800 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh, 2801 EXT4_BLOCKS_PER_GROUP(sb) / 8); 2802 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2803 2804 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2805 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2806 /* 2807 * Now reduce the dirty block count also. Should not go negative 2808 */ 2809 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2810 /* release all the reserved blocks if non delalloc */ 2811 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2812 reserv_clstrs); 2813 2814 if (sbi->s_log_groups_per_flex) { 2815 ext4_group_t flex_group = ext4_flex_group(sbi, 2816 ac->ac_b_ex.fe_group); 2817 atomic_sub(ac->ac_b_ex.fe_len, 2818 &sbi->s_flex_groups[flex_group].free_clusters); 2819 } 2820 2821 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2822 if (err) 2823 goto out_err; 2824 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2825 2826 out_err: 2827 ext4_mark_super_dirty(sb); 2828 brelse(bitmap_bh); 2829 return err; 2830 } 2831 2832 /* 2833 * here we normalize request for locality group 2834 * Group request are normalized to s_mb_group_prealloc, which goes to 2835 * s_strip if we set the same via mount option. 2836 * s_mb_group_prealloc can be configured via 2837 * /sys/fs/ext4/<partition>/mb_group_prealloc 2838 * 2839 * XXX: should we try to preallocate more than the group has now? 2840 */ 2841 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2842 { 2843 struct super_block *sb = ac->ac_sb; 2844 struct ext4_locality_group *lg = ac->ac_lg; 2845 2846 BUG_ON(lg == NULL); 2847 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2848 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2849 current->pid, ac->ac_g_ex.fe_len); 2850 } 2851 2852 /* 2853 * Normalization means making request better in terms of 2854 * size and alignment 2855 */ 2856 static noinline_for_stack void 2857 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2858 struct ext4_allocation_request *ar) 2859 { 2860 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2861 int bsbits, max; 2862 ext4_lblk_t end; 2863 loff_t size, start_off; 2864 loff_t orig_size __maybe_unused; 2865 ext4_lblk_t start; 2866 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2867 struct ext4_prealloc_space *pa; 2868 2869 /* do normalize only data requests, metadata requests 2870 do not need preallocation */ 2871 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2872 return; 2873 2874 /* sometime caller may want exact blocks */ 2875 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2876 return; 2877 2878 /* caller may indicate that preallocation isn't 2879 * required (it's a tail, for example) */ 2880 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2881 return; 2882 2883 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2884 ext4_mb_normalize_group_request(ac); 2885 return ; 2886 } 2887 2888 bsbits = ac->ac_sb->s_blocksize_bits; 2889 2890 /* first, let's learn actual file size 2891 * given current request is allocated */ 2892 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2893 size = size << bsbits; 2894 if (size < i_size_read(ac->ac_inode)) 2895 size = i_size_read(ac->ac_inode); 2896 orig_size = size; 2897 2898 /* max size of free chunks */ 2899 max = 2 << bsbits; 2900 2901 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2902 (req <= (size) || max <= (chunk_size)) 2903 2904 /* first, try to predict filesize */ 2905 /* XXX: should this table be tunable? */ 2906 start_off = 0; 2907 if (size <= 16 * 1024) { 2908 size = 16 * 1024; 2909 } else if (size <= 32 * 1024) { 2910 size = 32 * 1024; 2911 } else if (size <= 64 * 1024) { 2912 size = 64 * 1024; 2913 } else if (size <= 128 * 1024) { 2914 size = 128 * 1024; 2915 } else if (size <= 256 * 1024) { 2916 size = 256 * 1024; 2917 } else if (size <= 512 * 1024) { 2918 size = 512 * 1024; 2919 } else if (size <= 1024 * 1024) { 2920 size = 1024 * 1024; 2921 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2922 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2923 (21 - bsbits)) << 21; 2924 size = 2 * 1024 * 1024; 2925 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2926 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2927 (22 - bsbits)) << 22; 2928 size = 4 * 1024 * 1024; 2929 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2930 (8<<20)>>bsbits, max, 8 * 1024)) { 2931 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2932 (23 - bsbits)) << 23; 2933 size = 8 * 1024 * 1024; 2934 } else { 2935 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2936 size = ac->ac_o_ex.fe_len << bsbits; 2937 } 2938 size = size >> bsbits; 2939 start = start_off >> bsbits; 2940 2941 /* don't cover already allocated blocks in selected range */ 2942 if (ar->pleft && start <= ar->lleft) { 2943 size -= ar->lleft + 1 - start; 2944 start = ar->lleft + 1; 2945 } 2946 if (ar->pright && start + size - 1 >= ar->lright) 2947 size -= start + size - ar->lright; 2948 2949 end = start + size; 2950 2951 /* check we don't cross already preallocated blocks */ 2952 rcu_read_lock(); 2953 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2954 ext4_lblk_t pa_end; 2955 2956 if (pa->pa_deleted) 2957 continue; 2958 spin_lock(&pa->pa_lock); 2959 if (pa->pa_deleted) { 2960 spin_unlock(&pa->pa_lock); 2961 continue; 2962 } 2963 2964 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2965 pa->pa_len); 2966 2967 /* PA must not overlap original request */ 2968 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2969 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2970 2971 /* skip PAs this normalized request doesn't overlap with */ 2972 if (pa->pa_lstart >= end || pa_end <= start) { 2973 spin_unlock(&pa->pa_lock); 2974 continue; 2975 } 2976 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2977 2978 /* adjust start or end to be adjacent to this pa */ 2979 if (pa_end <= ac->ac_o_ex.fe_logical) { 2980 BUG_ON(pa_end < start); 2981 start = pa_end; 2982 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2983 BUG_ON(pa->pa_lstart > end); 2984 end = pa->pa_lstart; 2985 } 2986 spin_unlock(&pa->pa_lock); 2987 } 2988 rcu_read_unlock(); 2989 size = end - start; 2990 2991 /* XXX: extra loop to check we really don't overlap preallocations */ 2992 rcu_read_lock(); 2993 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2994 ext4_lblk_t pa_end; 2995 2996 spin_lock(&pa->pa_lock); 2997 if (pa->pa_deleted == 0) { 2998 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2999 pa->pa_len); 3000 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3001 } 3002 spin_unlock(&pa->pa_lock); 3003 } 3004 rcu_read_unlock(); 3005 3006 if (start + size <= ac->ac_o_ex.fe_logical && 3007 start > ac->ac_o_ex.fe_logical) { 3008 ext4_msg(ac->ac_sb, KERN_ERR, 3009 "start %lu, size %lu, fe_logical %lu", 3010 (unsigned long) start, (unsigned long) size, 3011 (unsigned long) ac->ac_o_ex.fe_logical); 3012 } 3013 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3014 start > ac->ac_o_ex.fe_logical); 3015 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3016 3017 /* now prepare goal request */ 3018 3019 /* XXX: is it better to align blocks WRT to logical 3020 * placement or satisfy big request as is */ 3021 ac->ac_g_ex.fe_logical = start; 3022 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3023 3024 /* define goal start in order to merge */ 3025 if (ar->pright && (ar->lright == (start + size))) { 3026 /* merge to the right */ 3027 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3028 &ac->ac_f_ex.fe_group, 3029 &ac->ac_f_ex.fe_start); 3030 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3031 } 3032 if (ar->pleft && (ar->lleft + 1 == start)) { 3033 /* merge to the left */ 3034 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3035 &ac->ac_f_ex.fe_group, 3036 &ac->ac_f_ex.fe_start); 3037 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3038 } 3039 3040 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3041 (unsigned) orig_size, (unsigned) start); 3042 } 3043 3044 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3045 { 3046 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3047 3048 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3049 atomic_inc(&sbi->s_bal_reqs); 3050 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3051 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3052 atomic_inc(&sbi->s_bal_success); 3053 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3054 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3055 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3056 atomic_inc(&sbi->s_bal_goals); 3057 if (ac->ac_found > sbi->s_mb_max_to_scan) 3058 atomic_inc(&sbi->s_bal_breaks); 3059 } 3060 3061 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3062 trace_ext4_mballoc_alloc(ac); 3063 else 3064 trace_ext4_mballoc_prealloc(ac); 3065 } 3066 3067 /* 3068 * Called on failure; free up any blocks from the inode PA for this 3069 * context. We don't need this for MB_GROUP_PA because we only change 3070 * pa_free in ext4_mb_release_context(), but on failure, we've already 3071 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3072 */ 3073 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3074 { 3075 struct ext4_prealloc_space *pa = ac->ac_pa; 3076 3077 if (pa && pa->pa_type == MB_INODE_PA) 3078 pa->pa_free += ac->ac_b_ex.fe_len; 3079 } 3080 3081 /* 3082 * use blocks preallocated to inode 3083 */ 3084 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3085 struct ext4_prealloc_space *pa) 3086 { 3087 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3088 ext4_fsblk_t start; 3089 ext4_fsblk_t end; 3090 int len; 3091 3092 /* found preallocated blocks, use them */ 3093 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3094 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3095 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3096 len = EXT4_NUM_B2C(sbi, end - start); 3097 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3098 &ac->ac_b_ex.fe_start); 3099 ac->ac_b_ex.fe_len = len; 3100 ac->ac_status = AC_STATUS_FOUND; 3101 ac->ac_pa = pa; 3102 3103 BUG_ON(start < pa->pa_pstart); 3104 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3105 BUG_ON(pa->pa_free < len); 3106 pa->pa_free -= len; 3107 3108 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3109 } 3110 3111 /* 3112 * use blocks preallocated to locality group 3113 */ 3114 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3115 struct ext4_prealloc_space *pa) 3116 { 3117 unsigned int len = ac->ac_o_ex.fe_len; 3118 3119 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3120 &ac->ac_b_ex.fe_group, 3121 &ac->ac_b_ex.fe_start); 3122 ac->ac_b_ex.fe_len = len; 3123 ac->ac_status = AC_STATUS_FOUND; 3124 ac->ac_pa = pa; 3125 3126 /* we don't correct pa_pstart or pa_plen here to avoid 3127 * possible race when the group is being loaded concurrently 3128 * instead we correct pa later, after blocks are marked 3129 * in on-disk bitmap -- see ext4_mb_release_context() 3130 * Other CPUs are prevented from allocating from this pa by lg_mutex 3131 */ 3132 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3133 } 3134 3135 /* 3136 * Return the prealloc space that have minimal distance 3137 * from the goal block. @cpa is the prealloc 3138 * space that is having currently known minimal distance 3139 * from the goal block. 3140 */ 3141 static struct ext4_prealloc_space * 3142 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3143 struct ext4_prealloc_space *pa, 3144 struct ext4_prealloc_space *cpa) 3145 { 3146 ext4_fsblk_t cur_distance, new_distance; 3147 3148 if (cpa == NULL) { 3149 atomic_inc(&pa->pa_count); 3150 return pa; 3151 } 3152 cur_distance = abs(goal_block - cpa->pa_pstart); 3153 new_distance = abs(goal_block - pa->pa_pstart); 3154 3155 if (cur_distance <= new_distance) 3156 return cpa; 3157 3158 /* drop the previous reference */ 3159 atomic_dec(&cpa->pa_count); 3160 atomic_inc(&pa->pa_count); 3161 return pa; 3162 } 3163 3164 /* 3165 * search goal blocks in preallocated space 3166 */ 3167 static noinline_for_stack int 3168 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3169 { 3170 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3171 int order, i; 3172 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3173 struct ext4_locality_group *lg; 3174 struct ext4_prealloc_space *pa, *cpa = NULL; 3175 ext4_fsblk_t goal_block; 3176 3177 /* only data can be preallocated */ 3178 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3179 return 0; 3180 3181 /* first, try per-file preallocation */ 3182 rcu_read_lock(); 3183 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3184 3185 /* all fields in this condition don't change, 3186 * so we can skip locking for them */ 3187 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3188 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3189 EXT4_C2B(sbi, pa->pa_len))) 3190 continue; 3191 3192 /* non-extent files can't have physical blocks past 2^32 */ 3193 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3194 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3195 EXT4_MAX_BLOCK_FILE_PHYS)) 3196 continue; 3197 3198 /* found preallocated blocks, use them */ 3199 spin_lock(&pa->pa_lock); 3200 if (pa->pa_deleted == 0 && pa->pa_free) { 3201 atomic_inc(&pa->pa_count); 3202 ext4_mb_use_inode_pa(ac, pa); 3203 spin_unlock(&pa->pa_lock); 3204 ac->ac_criteria = 10; 3205 rcu_read_unlock(); 3206 return 1; 3207 } 3208 spin_unlock(&pa->pa_lock); 3209 } 3210 rcu_read_unlock(); 3211 3212 /* can we use group allocation? */ 3213 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3214 return 0; 3215 3216 /* inode may have no locality group for some reason */ 3217 lg = ac->ac_lg; 3218 if (lg == NULL) 3219 return 0; 3220 order = fls(ac->ac_o_ex.fe_len) - 1; 3221 if (order > PREALLOC_TB_SIZE - 1) 3222 /* The max size of hash table is PREALLOC_TB_SIZE */ 3223 order = PREALLOC_TB_SIZE - 1; 3224 3225 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3226 /* 3227 * search for the prealloc space that is having 3228 * minimal distance from the goal block. 3229 */ 3230 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3231 rcu_read_lock(); 3232 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3233 pa_inode_list) { 3234 spin_lock(&pa->pa_lock); 3235 if (pa->pa_deleted == 0 && 3236 pa->pa_free >= ac->ac_o_ex.fe_len) { 3237 3238 cpa = ext4_mb_check_group_pa(goal_block, 3239 pa, cpa); 3240 } 3241 spin_unlock(&pa->pa_lock); 3242 } 3243 rcu_read_unlock(); 3244 } 3245 if (cpa) { 3246 ext4_mb_use_group_pa(ac, cpa); 3247 ac->ac_criteria = 20; 3248 return 1; 3249 } 3250 return 0; 3251 } 3252 3253 /* 3254 * the function goes through all block freed in the group 3255 * but not yet committed and marks them used in in-core bitmap. 3256 * buddy must be generated from this bitmap 3257 * Need to be called with the ext4 group lock held 3258 */ 3259 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3260 ext4_group_t group) 3261 { 3262 struct rb_node *n; 3263 struct ext4_group_info *grp; 3264 struct ext4_free_data *entry; 3265 3266 grp = ext4_get_group_info(sb, group); 3267 n = rb_first(&(grp->bb_free_root)); 3268 3269 while (n) { 3270 entry = rb_entry(n, struct ext4_free_data, efd_node); 3271 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3272 n = rb_next(n); 3273 } 3274 return; 3275 } 3276 3277 /* 3278 * the function goes through all preallocation in this group and marks them 3279 * used in in-core bitmap. buddy must be generated from this bitmap 3280 * Need to be called with ext4 group lock held 3281 */ 3282 static noinline_for_stack 3283 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3284 ext4_group_t group) 3285 { 3286 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3287 struct ext4_prealloc_space *pa; 3288 struct list_head *cur; 3289 ext4_group_t groupnr; 3290 ext4_grpblk_t start; 3291 int preallocated = 0; 3292 int len; 3293 3294 /* all form of preallocation discards first load group, 3295 * so the only competing code is preallocation use. 3296 * we don't need any locking here 3297 * notice we do NOT ignore preallocations with pa_deleted 3298 * otherwise we could leave used blocks available for 3299 * allocation in buddy when concurrent ext4_mb_put_pa() 3300 * is dropping preallocation 3301 */ 3302 list_for_each(cur, &grp->bb_prealloc_list) { 3303 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3304 spin_lock(&pa->pa_lock); 3305 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3306 &groupnr, &start); 3307 len = pa->pa_len; 3308 spin_unlock(&pa->pa_lock); 3309 if (unlikely(len == 0)) 3310 continue; 3311 BUG_ON(groupnr != group); 3312 ext4_set_bits(bitmap, start, len); 3313 preallocated += len; 3314 } 3315 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3316 } 3317 3318 static void ext4_mb_pa_callback(struct rcu_head *head) 3319 { 3320 struct ext4_prealloc_space *pa; 3321 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3322 kmem_cache_free(ext4_pspace_cachep, pa); 3323 } 3324 3325 /* 3326 * drops a reference to preallocated space descriptor 3327 * if this was the last reference and the space is consumed 3328 */ 3329 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3330 struct super_block *sb, struct ext4_prealloc_space *pa) 3331 { 3332 ext4_group_t grp; 3333 ext4_fsblk_t grp_blk; 3334 3335 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3336 return; 3337 3338 /* in this short window concurrent discard can set pa_deleted */ 3339 spin_lock(&pa->pa_lock); 3340 if (pa->pa_deleted == 1) { 3341 spin_unlock(&pa->pa_lock); 3342 return; 3343 } 3344 3345 pa->pa_deleted = 1; 3346 spin_unlock(&pa->pa_lock); 3347 3348 grp_blk = pa->pa_pstart; 3349 /* 3350 * If doing group-based preallocation, pa_pstart may be in the 3351 * next group when pa is used up 3352 */ 3353 if (pa->pa_type == MB_GROUP_PA) 3354 grp_blk--; 3355 3356 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3357 3358 /* 3359 * possible race: 3360 * 3361 * P1 (buddy init) P2 (regular allocation) 3362 * find block B in PA 3363 * copy on-disk bitmap to buddy 3364 * mark B in on-disk bitmap 3365 * drop PA from group 3366 * mark all PAs in buddy 3367 * 3368 * thus, P1 initializes buddy with B available. to prevent this 3369 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3370 * against that pair 3371 */ 3372 ext4_lock_group(sb, grp); 3373 list_del(&pa->pa_group_list); 3374 ext4_unlock_group(sb, grp); 3375 3376 spin_lock(pa->pa_obj_lock); 3377 list_del_rcu(&pa->pa_inode_list); 3378 spin_unlock(pa->pa_obj_lock); 3379 3380 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3381 } 3382 3383 /* 3384 * creates new preallocated space for given inode 3385 */ 3386 static noinline_for_stack int 3387 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3388 { 3389 struct super_block *sb = ac->ac_sb; 3390 struct ext4_sb_info *sbi = EXT4_SB(sb); 3391 struct ext4_prealloc_space *pa; 3392 struct ext4_group_info *grp; 3393 struct ext4_inode_info *ei; 3394 3395 /* preallocate only when found space is larger then requested */ 3396 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3397 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3398 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3399 3400 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3401 if (pa == NULL) 3402 return -ENOMEM; 3403 3404 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3405 int winl; 3406 int wins; 3407 int win; 3408 int offs; 3409 3410 /* we can't allocate as much as normalizer wants. 3411 * so, found space must get proper lstart 3412 * to cover original request */ 3413 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3414 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3415 3416 /* we're limited by original request in that 3417 * logical block must be covered any way 3418 * winl is window we can move our chunk within */ 3419 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3420 3421 /* also, we should cover whole original request */ 3422 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3423 3424 /* the smallest one defines real window */ 3425 win = min(winl, wins); 3426 3427 offs = ac->ac_o_ex.fe_logical % 3428 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3429 if (offs && offs < win) 3430 win = offs; 3431 3432 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3433 EXT4_B2C(sbi, win); 3434 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3435 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3436 } 3437 3438 /* preallocation can change ac_b_ex, thus we store actually 3439 * allocated blocks for history */ 3440 ac->ac_f_ex = ac->ac_b_ex; 3441 3442 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3443 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3444 pa->pa_len = ac->ac_b_ex.fe_len; 3445 pa->pa_free = pa->pa_len; 3446 atomic_set(&pa->pa_count, 1); 3447 spin_lock_init(&pa->pa_lock); 3448 INIT_LIST_HEAD(&pa->pa_inode_list); 3449 INIT_LIST_HEAD(&pa->pa_group_list); 3450 pa->pa_deleted = 0; 3451 pa->pa_type = MB_INODE_PA; 3452 3453 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3454 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3455 trace_ext4_mb_new_inode_pa(ac, pa); 3456 3457 ext4_mb_use_inode_pa(ac, pa); 3458 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3459 3460 ei = EXT4_I(ac->ac_inode); 3461 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3462 3463 pa->pa_obj_lock = &ei->i_prealloc_lock; 3464 pa->pa_inode = ac->ac_inode; 3465 3466 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3467 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3468 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3469 3470 spin_lock(pa->pa_obj_lock); 3471 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3472 spin_unlock(pa->pa_obj_lock); 3473 3474 return 0; 3475 } 3476 3477 /* 3478 * creates new preallocated space for locality group inodes belongs to 3479 */ 3480 static noinline_for_stack int 3481 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3482 { 3483 struct super_block *sb = ac->ac_sb; 3484 struct ext4_locality_group *lg; 3485 struct ext4_prealloc_space *pa; 3486 struct ext4_group_info *grp; 3487 3488 /* preallocate only when found space is larger then requested */ 3489 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3490 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3491 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3492 3493 BUG_ON(ext4_pspace_cachep == NULL); 3494 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3495 if (pa == NULL) 3496 return -ENOMEM; 3497 3498 /* preallocation can change ac_b_ex, thus we store actually 3499 * allocated blocks for history */ 3500 ac->ac_f_ex = ac->ac_b_ex; 3501 3502 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3503 pa->pa_lstart = pa->pa_pstart; 3504 pa->pa_len = ac->ac_b_ex.fe_len; 3505 pa->pa_free = pa->pa_len; 3506 atomic_set(&pa->pa_count, 1); 3507 spin_lock_init(&pa->pa_lock); 3508 INIT_LIST_HEAD(&pa->pa_inode_list); 3509 INIT_LIST_HEAD(&pa->pa_group_list); 3510 pa->pa_deleted = 0; 3511 pa->pa_type = MB_GROUP_PA; 3512 3513 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3514 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3515 trace_ext4_mb_new_group_pa(ac, pa); 3516 3517 ext4_mb_use_group_pa(ac, pa); 3518 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3519 3520 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3521 lg = ac->ac_lg; 3522 BUG_ON(lg == NULL); 3523 3524 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3525 pa->pa_inode = NULL; 3526 3527 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3528 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3529 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3530 3531 /* 3532 * We will later add the new pa to the right bucket 3533 * after updating the pa_free in ext4_mb_release_context 3534 */ 3535 return 0; 3536 } 3537 3538 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3539 { 3540 int err; 3541 3542 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3543 err = ext4_mb_new_group_pa(ac); 3544 else 3545 err = ext4_mb_new_inode_pa(ac); 3546 return err; 3547 } 3548 3549 /* 3550 * finds all unused blocks in on-disk bitmap, frees them in 3551 * in-core bitmap and buddy. 3552 * @pa must be unlinked from inode and group lists, so that 3553 * nobody else can find/use it. 3554 * the caller MUST hold group/inode locks. 3555 * TODO: optimize the case when there are no in-core structures yet 3556 */ 3557 static noinline_for_stack int 3558 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3559 struct ext4_prealloc_space *pa) 3560 { 3561 struct super_block *sb = e4b->bd_sb; 3562 struct ext4_sb_info *sbi = EXT4_SB(sb); 3563 unsigned int end; 3564 unsigned int next; 3565 ext4_group_t group; 3566 ext4_grpblk_t bit; 3567 unsigned long long grp_blk_start; 3568 int err = 0; 3569 int free = 0; 3570 3571 BUG_ON(pa->pa_deleted == 0); 3572 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3573 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3574 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3575 end = bit + pa->pa_len; 3576 3577 while (bit < end) { 3578 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3579 if (bit >= end) 3580 break; 3581 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3582 mb_debug(1, " free preallocated %u/%u in group %u\n", 3583 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3584 (unsigned) next - bit, (unsigned) group); 3585 free += next - bit; 3586 3587 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3588 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3589 EXT4_C2B(sbi, bit)), 3590 next - bit); 3591 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3592 bit = next + 1; 3593 } 3594 if (free != pa->pa_free) { 3595 ext4_msg(e4b->bd_sb, KERN_CRIT, 3596 "pa %p: logic %lu, phys. %lu, len %lu", 3597 pa, (unsigned long) pa->pa_lstart, 3598 (unsigned long) pa->pa_pstart, 3599 (unsigned long) pa->pa_len); 3600 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3601 free, pa->pa_free); 3602 /* 3603 * pa is already deleted so we use the value obtained 3604 * from the bitmap and continue. 3605 */ 3606 } 3607 atomic_add(free, &sbi->s_mb_discarded); 3608 3609 return err; 3610 } 3611 3612 static noinline_for_stack int 3613 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3614 struct ext4_prealloc_space *pa) 3615 { 3616 struct super_block *sb = e4b->bd_sb; 3617 ext4_group_t group; 3618 ext4_grpblk_t bit; 3619 3620 trace_ext4_mb_release_group_pa(sb, pa); 3621 BUG_ON(pa->pa_deleted == 0); 3622 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3623 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3624 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3625 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3626 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3627 3628 return 0; 3629 } 3630 3631 /* 3632 * releases all preallocations in given group 3633 * 3634 * first, we need to decide discard policy: 3635 * - when do we discard 3636 * 1) ENOSPC 3637 * - how many do we discard 3638 * 1) how many requested 3639 */ 3640 static noinline_for_stack int 3641 ext4_mb_discard_group_preallocations(struct super_block *sb, 3642 ext4_group_t group, int needed) 3643 { 3644 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3645 struct buffer_head *bitmap_bh = NULL; 3646 struct ext4_prealloc_space *pa, *tmp; 3647 struct list_head list; 3648 struct ext4_buddy e4b; 3649 int err; 3650 int busy = 0; 3651 int free = 0; 3652 3653 mb_debug(1, "discard preallocation for group %u\n", group); 3654 3655 if (list_empty(&grp->bb_prealloc_list)) 3656 return 0; 3657 3658 bitmap_bh = ext4_read_block_bitmap(sb, group); 3659 if (bitmap_bh == NULL) { 3660 ext4_error(sb, "Error reading block bitmap for %u", group); 3661 return 0; 3662 } 3663 3664 err = ext4_mb_load_buddy(sb, group, &e4b); 3665 if (err) { 3666 ext4_error(sb, "Error loading buddy information for %u", group); 3667 put_bh(bitmap_bh); 3668 return 0; 3669 } 3670 3671 if (needed == 0) 3672 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3673 3674 INIT_LIST_HEAD(&list); 3675 repeat: 3676 ext4_lock_group(sb, group); 3677 list_for_each_entry_safe(pa, tmp, 3678 &grp->bb_prealloc_list, pa_group_list) { 3679 spin_lock(&pa->pa_lock); 3680 if (atomic_read(&pa->pa_count)) { 3681 spin_unlock(&pa->pa_lock); 3682 busy = 1; 3683 continue; 3684 } 3685 if (pa->pa_deleted) { 3686 spin_unlock(&pa->pa_lock); 3687 continue; 3688 } 3689 3690 /* seems this one can be freed ... */ 3691 pa->pa_deleted = 1; 3692 3693 /* we can trust pa_free ... */ 3694 free += pa->pa_free; 3695 3696 spin_unlock(&pa->pa_lock); 3697 3698 list_del(&pa->pa_group_list); 3699 list_add(&pa->u.pa_tmp_list, &list); 3700 } 3701 3702 /* if we still need more blocks and some PAs were used, try again */ 3703 if (free < needed && busy) { 3704 busy = 0; 3705 ext4_unlock_group(sb, group); 3706 /* 3707 * Yield the CPU here so that we don't get soft lockup 3708 * in non preempt case. 3709 */ 3710 yield(); 3711 goto repeat; 3712 } 3713 3714 /* found anything to free? */ 3715 if (list_empty(&list)) { 3716 BUG_ON(free != 0); 3717 goto out; 3718 } 3719 3720 /* now free all selected PAs */ 3721 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3722 3723 /* remove from object (inode or locality group) */ 3724 spin_lock(pa->pa_obj_lock); 3725 list_del_rcu(&pa->pa_inode_list); 3726 spin_unlock(pa->pa_obj_lock); 3727 3728 if (pa->pa_type == MB_GROUP_PA) 3729 ext4_mb_release_group_pa(&e4b, pa); 3730 else 3731 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3732 3733 list_del(&pa->u.pa_tmp_list); 3734 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3735 } 3736 3737 out: 3738 ext4_unlock_group(sb, group); 3739 ext4_mb_unload_buddy(&e4b); 3740 put_bh(bitmap_bh); 3741 return free; 3742 } 3743 3744 /* 3745 * releases all non-used preallocated blocks for given inode 3746 * 3747 * It's important to discard preallocations under i_data_sem 3748 * We don't want another block to be served from the prealloc 3749 * space when we are discarding the inode prealloc space. 3750 * 3751 * FIXME!! Make sure it is valid at all the call sites 3752 */ 3753 void ext4_discard_preallocations(struct inode *inode) 3754 { 3755 struct ext4_inode_info *ei = EXT4_I(inode); 3756 struct super_block *sb = inode->i_sb; 3757 struct buffer_head *bitmap_bh = NULL; 3758 struct ext4_prealloc_space *pa, *tmp; 3759 ext4_group_t group = 0; 3760 struct list_head list; 3761 struct ext4_buddy e4b; 3762 int err; 3763 3764 if (!S_ISREG(inode->i_mode)) { 3765 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3766 return; 3767 } 3768 3769 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3770 trace_ext4_discard_preallocations(inode); 3771 3772 INIT_LIST_HEAD(&list); 3773 3774 repeat: 3775 /* first, collect all pa's in the inode */ 3776 spin_lock(&ei->i_prealloc_lock); 3777 while (!list_empty(&ei->i_prealloc_list)) { 3778 pa = list_entry(ei->i_prealloc_list.next, 3779 struct ext4_prealloc_space, pa_inode_list); 3780 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3781 spin_lock(&pa->pa_lock); 3782 if (atomic_read(&pa->pa_count)) { 3783 /* this shouldn't happen often - nobody should 3784 * use preallocation while we're discarding it */ 3785 spin_unlock(&pa->pa_lock); 3786 spin_unlock(&ei->i_prealloc_lock); 3787 ext4_msg(sb, KERN_ERR, 3788 "uh-oh! used pa while discarding"); 3789 WARN_ON(1); 3790 schedule_timeout_uninterruptible(HZ); 3791 goto repeat; 3792 3793 } 3794 if (pa->pa_deleted == 0) { 3795 pa->pa_deleted = 1; 3796 spin_unlock(&pa->pa_lock); 3797 list_del_rcu(&pa->pa_inode_list); 3798 list_add(&pa->u.pa_tmp_list, &list); 3799 continue; 3800 } 3801 3802 /* someone is deleting pa right now */ 3803 spin_unlock(&pa->pa_lock); 3804 spin_unlock(&ei->i_prealloc_lock); 3805 3806 /* we have to wait here because pa_deleted 3807 * doesn't mean pa is already unlinked from 3808 * the list. as we might be called from 3809 * ->clear_inode() the inode will get freed 3810 * and concurrent thread which is unlinking 3811 * pa from inode's list may access already 3812 * freed memory, bad-bad-bad */ 3813 3814 /* XXX: if this happens too often, we can 3815 * add a flag to force wait only in case 3816 * of ->clear_inode(), but not in case of 3817 * regular truncate */ 3818 schedule_timeout_uninterruptible(HZ); 3819 goto repeat; 3820 } 3821 spin_unlock(&ei->i_prealloc_lock); 3822 3823 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3824 BUG_ON(pa->pa_type != MB_INODE_PA); 3825 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3826 3827 err = ext4_mb_load_buddy(sb, group, &e4b); 3828 if (err) { 3829 ext4_error(sb, "Error loading buddy information for %u", 3830 group); 3831 continue; 3832 } 3833 3834 bitmap_bh = ext4_read_block_bitmap(sb, group); 3835 if (bitmap_bh == NULL) { 3836 ext4_error(sb, "Error reading block bitmap for %u", 3837 group); 3838 ext4_mb_unload_buddy(&e4b); 3839 continue; 3840 } 3841 3842 ext4_lock_group(sb, group); 3843 list_del(&pa->pa_group_list); 3844 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3845 ext4_unlock_group(sb, group); 3846 3847 ext4_mb_unload_buddy(&e4b); 3848 put_bh(bitmap_bh); 3849 3850 list_del(&pa->u.pa_tmp_list); 3851 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3852 } 3853 } 3854 3855 #ifdef CONFIG_EXT4_DEBUG 3856 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3857 { 3858 struct super_block *sb = ac->ac_sb; 3859 ext4_group_t ngroups, i; 3860 3861 if (!mb_enable_debug || 3862 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3863 return; 3864 3865 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3866 " Allocation context details:"); 3867 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3868 ac->ac_status, ac->ac_flags); 3869 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3870 "goal %lu/%lu/%lu@%lu, " 3871 "best %lu/%lu/%lu@%lu cr %d", 3872 (unsigned long)ac->ac_o_ex.fe_group, 3873 (unsigned long)ac->ac_o_ex.fe_start, 3874 (unsigned long)ac->ac_o_ex.fe_len, 3875 (unsigned long)ac->ac_o_ex.fe_logical, 3876 (unsigned long)ac->ac_g_ex.fe_group, 3877 (unsigned long)ac->ac_g_ex.fe_start, 3878 (unsigned long)ac->ac_g_ex.fe_len, 3879 (unsigned long)ac->ac_g_ex.fe_logical, 3880 (unsigned long)ac->ac_b_ex.fe_group, 3881 (unsigned long)ac->ac_b_ex.fe_start, 3882 (unsigned long)ac->ac_b_ex.fe_len, 3883 (unsigned long)ac->ac_b_ex.fe_logical, 3884 (int)ac->ac_criteria); 3885 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3886 ac->ac_ex_scanned, ac->ac_found); 3887 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3888 ngroups = ext4_get_groups_count(sb); 3889 for (i = 0; i < ngroups; i++) { 3890 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3891 struct ext4_prealloc_space *pa; 3892 ext4_grpblk_t start; 3893 struct list_head *cur; 3894 ext4_lock_group(sb, i); 3895 list_for_each(cur, &grp->bb_prealloc_list) { 3896 pa = list_entry(cur, struct ext4_prealloc_space, 3897 pa_group_list); 3898 spin_lock(&pa->pa_lock); 3899 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3900 NULL, &start); 3901 spin_unlock(&pa->pa_lock); 3902 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3903 start, pa->pa_len); 3904 } 3905 ext4_unlock_group(sb, i); 3906 3907 if (grp->bb_free == 0) 3908 continue; 3909 printk(KERN_ERR "%u: %d/%d \n", 3910 i, grp->bb_free, grp->bb_fragments); 3911 } 3912 printk(KERN_ERR "\n"); 3913 } 3914 #else 3915 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3916 { 3917 return; 3918 } 3919 #endif 3920 3921 /* 3922 * We use locality group preallocation for small size file. The size of the 3923 * file is determined by the current size or the resulting size after 3924 * allocation which ever is larger 3925 * 3926 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3927 */ 3928 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3929 { 3930 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3931 int bsbits = ac->ac_sb->s_blocksize_bits; 3932 loff_t size, isize; 3933 3934 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3935 return; 3936 3937 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3938 return; 3939 3940 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3941 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3942 >> bsbits; 3943 3944 if ((size == isize) && 3945 !ext4_fs_is_busy(sbi) && 3946 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3947 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3948 return; 3949 } 3950 3951 if (sbi->s_mb_group_prealloc <= 0) { 3952 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3953 return; 3954 } 3955 3956 /* don't use group allocation for large files */ 3957 size = max(size, isize); 3958 if (size > sbi->s_mb_stream_request) { 3959 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3960 return; 3961 } 3962 3963 BUG_ON(ac->ac_lg != NULL); 3964 /* 3965 * locality group prealloc space are per cpu. The reason for having 3966 * per cpu locality group is to reduce the contention between block 3967 * request from multiple CPUs. 3968 */ 3969 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3970 3971 /* we're going to use group allocation */ 3972 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3973 3974 /* serialize all allocations in the group */ 3975 mutex_lock(&ac->ac_lg->lg_mutex); 3976 } 3977 3978 static noinline_for_stack int 3979 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3980 struct ext4_allocation_request *ar) 3981 { 3982 struct super_block *sb = ar->inode->i_sb; 3983 struct ext4_sb_info *sbi = EXT4_SB(sb); 3984 struct ext4_super_block *es = sbi->s_es; 3985 ext4_group_t group; 3986 unsigned int len; 3987 ext4_fsblk_t goal; 3988 ext4_grpblk_t block; 3989 3990 /* we can't allocate > group size */ 3991 len = ar->len; 3992 3993 /* just a dirty hack to filter too big requests */ 3994 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10) 3995 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10; 3996 3997 /* start searching from the goal */ 3998 goal = ar->goal; 3999 if (goal < le32_to_cpu(es->s_first_data_block) || 4000 goal >= ext4_blocks_count(es)) 4001 goal = le32_to_cpu(es->s_first_data_block); 4002 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4003 4004 /* set up allocation goals */ 4005 memset(ac, 0, sizeof(struct ext4_allocation_context)); 4006 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4007 ac->ac_status = AC_STATUS_CONTINUE; 4008 ac->ac_sb = sb; 4009 ac->ac_inode = ar->inode; 4010 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4011 ac->ac_o_ex.fe_group = group; 4012 ac->ac_o_ex.fe_start = block; 4013 ac->ac_o_ex.fe_len = len; 4014 ac->ac_g_ex = ac->ac_o_ex; 4015 ac->ac_flags = ar->flags; 4016 4017 /* we have to define context: we'll we work with a file or 4018 * locality group. this is a policy, actually */ 4019 ext4_mb_group_or_file(ac); 4020 4021 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4022 "left: %u/%u, right %u/%u to %swritable\n", 4023 (unsigned) ar->len, (unsigned) ar->logical, 4024 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4025 (unsigned) ar->lleft, (unsigned) ar->pleft, 4026 (unsigned) ar->lright, (unsigned) ar->pright, 4027 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4028 return 0; 4029 4030 } 4031 4032 static noinline_for_stack void 4033 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4034 struct ext4_locality_group *lg, 4035 int order, int total_entries) 4036 { 4037 ext4_group_t group = 0; 4038 struct ext4_buddy e4b; 4039 struct list_head discard_list; 4040 struct ext4_prealloc_space *pa, *tmp; 4041 4042 mb_debug(1, "discard locality group preallocation\n"); 4043 4044 INIT_LIST_HEAD(&discard_list); 4045 4046 spin_lock(&lg->lg_prealloc_lock); 4047 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4048 pa_inode_list) { 4049 spin_lock(&pa->pa_lock); 4050 if (atomic_read(&pa->pa_count)) { 4051 /* 4052 * This is the pa that we just used 4053 * for block allocation. So don't 4054 * free that 4055 */ 4056 spin_unlock(&pa->pa_lock); 4057 continue; 4058 } 4059 if (pa->pa_deleted) { 4060 spin_unlock(&pa->pa_lock); 4061 continue; 4062 } 4063 /* only lg prealloc space */ 4064 BUG_ON(pa->pa_type != MB_GROUP_PA); 4065 4066 /* seems this one can be freed ... */ 4067 pa->pa_deleted = 1; 4068 spin_unlock(&pa->pa_lock); 4069 4070 list_del_rcu(&pa->pa_inode_list); 4071 list_add(&pa->u.pa_tmp_list, &discard_list); 4072 4073 total_entries--; 4074 if (total_entries <= 5) { 4075 /* 4076 * we want to keep only 5 entries 4077 * allowing it to grow to 8. This 4078 * mak sure we don't call discard 4079 * soon for this list. 4080 */ 4081 break; 4082 } 4083 } 4084 spin_unlock(&lg->lg_prealloc_lock); 4085 4086 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4087 4088 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4089 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4090 ext4_error(sb, "Error loading buddy information for %u", 4091 group); 4092 continue; 4093 } 4094 ext4_lock_group(sb, group); 4095 list_del(&pa->pa_group_list); 4096 ext4_mb_release_group_pa(&e4b, pa); 4097 ext4_unlock_group(sb, group); 4098 4099 ext4_mb_unload_buddy(&e4b); 4100 list_del(&pa->u.pa_tmp_list); 4101 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4102 } 4103 } 4104 4105 /* 4106 * We have incremented pa_count. So it cannot be freed at this 4107 * point. Also we hold lg_mutex. So no parallel allocation is 4108 * possible from this lg. That means pa_free cannot be updated. 4109 * 4110 * A parallel ext4_mb_discard_group_preallocations is possible. 4111 * which can cause the lg_prealloc_list to be updated. 4112 */ 4113 4114 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4115 { 4116 int order, added = 0, lg_prealloc_count = 1; 4117 struct super_block *sb = ac->ac_sb; 4118 struct ext4_locality_group *lg = ac->ac_lg; 4119 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4120 4121 order = fls(pa->pa_free) - 1; 4122 if (order > PREALLOC_TB_SIZE - 1) 4123 /* The max size of hash table is PREALLOC_TB_SIZE */ 4124 order = PREALLOC_TB_SIZE - 1; 4125 /* Add the prealloc space to lg */ 4126 rcu_read_lock(); 4127 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4128 pa_inode_list) { 4129 spin_lock(&tmp_pa->pa_lock); 4130 if (tmp_pa->pa_deleted) { 4131 spin_unlock(&tmp_pa->pa_lock); 4132 continue; 4133 } 4134 if (!added && pa->pa_free < tmp_pa->pa_free) { 4135 /* Add to the tail of the previous entry */ 4136 list_add_tail_rcu(&pa->pa_inode_list, 4137 &tmp_pa->pa_inode_list); 4138 added = 1; 4139 /* 4140 * we want to count the total 4141 * number of entries in the list 4142 */ 4143 } 4144 spin_unlock(&tmp_pa->pa_lock); 4145 lg_prealloc_count++; 4146 } 4147 if (!added) 4148 list_add_tail_rcu(&pa->pa_inode_list, 4149 &lg->lg_prealloc_list[order]); 4150 rcu_read_unlock(); 4151 4152 /* Now trim the list to be not more than 8 elements */ 4153 if (lg_prealloc_count > 8) { 4154 ext4_mb_discard_lg_preallocations(sb, lg, 4155 order, lg_prealloc_count); 4156 return; 4157 } 4158 return ; 4159 } 4160 4161 /* 4162 * release all resource we used in allocation 4163 */ 4164 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4165 { 4166 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4167 struct ext4_prealloc_space *pa = ac->ac_pa; 4168 if (pa) { 4169 if (pa->pa_type == MB_GROUP_PA) { 4170 /* see comment in ext4_mb_use_group_pa() */ 4171 spin_lock(&pa->pa_lock); 4172 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4173 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4174 pa->pa_free -= ac->ac_b_ex.fe_len; 4175 pa->pa_len -= ac->ac_b_ex.fe_len; 4176 spin_unlock(&pa->pa_lock); 4177 } 4178 } 4179 if (pa) { 4180 /* 4181 * We want to add the pa to the right bucket. 4182 * Remove it from the list and while adding 4183 * make sure the list to which we are adding 4184 * doesn't grow big. 4185 */ 4186 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4187 spin_lock(pa->pa_obj_lock); 4188 list_del_rcu(&pa->pa_inode_list); 4189 spin_unlock(pa->pa_obj_lock); 4190 ext4_mb_add_n_trim(ac); 4191 } 4192 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4193 } 4194 if (ac->ac_bitmap_page) 4195 page_cache_release(ac->ac_bitmap_page); 4196 if (ac->ac_buddy_page) 4197 page_cache_release(ac->ac_buddy_page); 4198 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4199 mutex_unlock(&ac->ac_lg->lg_mutex); 4200 ext4_mb_collect_stats(ac); 4201 return 0; 4202 } 4203 4204 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4205 { 4206 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4207 int ret; 4208 int freed = 0; 4209 4210 trace_ext4_mb_discard_preallocations(sb, needed); 4211 for (i = 0; i < ngroups && needed > 0; i++) { 4212 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4213 freed += ret; 4214 needed -= ret; 4215 } 4216 4217 return freed; 4218 } 4219 4220 /* 4221 * Main entry point into mballoc to allocate blocks 4222 * it tries to use preallocation first, then falls back 4223 * to usual allocation 4224 */ 4225 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4226 struct ext4_allocation_request *ar, int *errp) 4227 { 4228 int freed; 4229 struct ext4_allocation_context *ac = NULL; 4230 struct ext4_sb_info *sbi; 4231 struct super_block *sb; 4232 ext4_fsblk_t block = 0; 4233 unsigned int inquota = 0; 4234 unsigned int reserv_clstrs = 0; 4235 4236 sb = ar->inode->i_sb; 4237 sbi = EXT4_SB(sb); 4238 4239 trace_ext4_request_blocks(ar); 4240 4241 /* Allow to use superuser reservation for quota file */ 4242 if (IS_NOQUOTA(ar->inode)) 4243 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4244 4245 /* 4246 * For delayed allocation, we could skip the ENOSPC and 4247 * EDQUOT check, as blocks and quotas have been already 4248 * reserved when data being copied into pagecache. 4249 */ 4250 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4251 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4252 else { 4253 /* Without delayed allocation we need to verify 4254 * there is enough free blocks to do block allocation 4255 * and verify allocation doesn't exceed the quota limits. 4256 */ 4257 while (ar->len && 4258 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4259 4260 /* let others to free the space */ 4261 yield(); 4262 ar->len = ar->len >> 1; 4263 } 4264 if (!ar->len) { 4265 *errp = -ENOSPC; 4266 return 0; 4267 } 4268 reserv_clstrs = ar->len; 4269 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4270 dquot_alloc_block_nofail(ar->inode, 4271 EXT4_C2B(sbi, ar->len)); 4272 } else { 4273 while (ar->len && 4274 dquot_alloc_block(ar->inode, 4275 EXT4_C2B(sbi, ar->len))) { 4276 4277 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4278 ar->len--; 4279 } 4280 } 4281 inquota = ar->len; 4282 if (ar->len == 0) { 4283 *errp = -EDQUOT; 4284 goto out; 4285 } 4286 } 4287 4288 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4289 if (!ac) { 4290 ar->len = 0; 4291 *errp = -ENOMEM; 4292 goto out; 4293 } 4294 4295 *errp = ext4_mb_initialize_context(ac, ar); 4296 if (*errp) { 4297 ar->len = 0; 4298 goto out; 4299 } 4300 4301 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4302 if (!ext4_mb_use_preallocated(ac)) { 4303 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4304 ext4_mb_normalize_request(ac, ar); 4305 repeat: 4306 /* allocate space in core */ 4307 *errp = ext4_mb_regular_allocator(ac); 4308 if (*errp) 4309 goto errout; 4310 4311 /* as we've just preallocated more space than 4312 * user requested orinally, we store allocated 4313 * space in a special descriptor */ 4314 if (ac->ac_status == AC_STATUS_FOUND && 4315 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4316 ext4_mb_new_preallocation(ac); 4317 } 4318 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4319 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4320 if (*errp == -EAGAIN) { 4321 /* 4322 * drop the reference that we took 4323 * in ext4_mb_use_best_found 4324 */ 4325 ext4_mb_release_context(ac); 4326 ac->ac_b_ex.fe_group = 0; 4327 ac->ac_b_ex.fe_start = 0; 4328 ac->ac_b_ex.fe_len = 0; 4329 ac->ac_status = AC_STATUS_CONTINUE; 4330 goto repeat; 4331 } else if (*errp) 4332 errout: 4333 ext4_discard_allocated_blocks(ac); 4334 else { 4335 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4336 ar->len = ac->ac_b_ex.fe_len; 4337 } 4338 } else { 4339 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4340 if (freed) 4341 goto repeat; 4342 *errp = -ENOSPC; 4343 } 4344 4345 if (*errp) { 4346 ac->ac_b_ex.fe_len = 0; 4347 ar->len = 0; 4348 ext4_mb_show_ac(ac); 4349 } 4350 ext4_mb_release_context(ac); 4351 out: 4352 if (ac) 4353 kmem_cache_free(ext4_ac_cachep, ac); 4354 if (inquota && ar->len < inquota) 4355 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4356 if (!ar->len) { 4357 if (!ext4_test_inode_state(ar->inode, 4358 EXT4_STATE_DELALLOC_RESERVED)) 4359 /* release all the reserved blocks if non delalloc */ 4360 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4361 reserv_clstrs); 4362 } 4363 4364 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4365 4366 return block; 4367 } 4368 4369 /* 4370 * We can merge two free data extents only if the physical blocks 4371 * are contiguous, AND the extents were freed by the same transaction, 4372 * AND the blocks are associated with the same group. 4373 */ 4374 static int can_merge(struct ext4_free_data *entry1, 4375 struct ext4_free_data *entry2) 4376 { 4377 if ((entry1->efd_tid == entry2->efd_tid) && 4378 (entry1->efd_group == entry2->efd_group) && 4379 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4380 return 1; 4381 return 0; 4382 } 4383 4384 static noinline_for_stack int 4385 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4386 struct ext4_free_data *new_entry) 4387 { 4388 ext4_group_t group = e4b->bd_group; 4389 ext4_grpblk_t cluster; 4390 struct ext4_free_data *entry; 4391 struct ext4_group_info *db = e4b->bd_info; 4392 struct super_block *sb = e4b->bd_sb; 4393 struct ext4_sb_info *sbi = EXT4_SB(sb); 4394 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4395 struct rb_node *parent = NULL, *new_node; 4396 4397 BUG_ON(!ext4_handle_valid(handle)); 4398 BUG_ON(e4b->bd_bitmap_page == NULL); 4399 BUG_ON(e4b->bd_buddy_page == NULL); 4400 4401 new_node = &new_entry->efd_node; 4402 cluster = new_entry->efd_start_cluster; 4403 4404 if (!*n) { 4405 /* first free block exent. We need to 4406 protect buddy cache from being freed, 4407 * otherwise we'll refresh it from 4408 * on-disk bitmap and lose not-yet-available 4409 * blocks */ 4410 page_cache_get(e4b->bd_buddy_page); 4411 page_cache_get(e4b->bd_bitmap_page); 4412 } 4413 while (*n) { 4414 parent = *n; 4415 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4416 if (cluster < entry->efd_start_cluster) 4417 n = &(*n)->rb_left; 4418 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4419 n = &(*n)->rb_right; 4420 else { 4421 ext4_grp_locked_error(sb, group, 0, 4422 ext4_group_first_block_no(sb, group) + 4423 EXT4_C2B(sbi, cluster), 4424 "Block already on to-be-freed list"); 4425 return 0; 4426 } 4427 } 4428 4429 rb_link_node(new_node, parent, n); 4430 rb_insert_color(new_node, &db->bb_free_root); 4431 4432 /* Now try to see the extent can be merged to left and right */ 4433 node = rb_prev(new_node); 4434 if (node) { 4435 entry = rb_entry(node, struct ext4_free_data, efd_node); 4436 if (can_merge(entry, new_entry)) { 4437 new_entry->efd_start_cluster = entry->efd_start_cluster; 4438 new_entry->efd_count += entry->efd_count; 4439 rb_erase(node, &(db->bb_free_root)); 4440 ext4_journal_callback_del(handle, &entry->efd_jce); 4441 kmem_cache_free(ext4_free_data_cachep, entry); 4442 } 4443 } 4444 4445 node = rb_next(new_node); 4446 if (node) { 4447 entry = rb_entry(node, struct ext4_free_data, efd_node); 4448 if (can_merge(new_entry, entry)) { 4449 new_entry->efd_count += entry->efd_count; 4450 rb_erase(node, &(db->bb_free_root)); 4451 ext4_journal_callback_del(handle, &entry->efd_jce); 4452 kmem_cache_free(ext4_free_data_cachep, entry); 4453 } 4454 } 4455 /* Add the extent to transaction's private list */ 4456 ext4_journal_callback_add(handle, ext4_free_data_callback, 4457 &new_entry->efd_jce); 4458 return 0; 4459 } 4460 4461 /** 4462 * ext4_free_blocks() -- Free given blocks and update quota 4463 * @handle: handle for this transaction 4464 * @inode: inode 4465 * @block: start physical block to free 4466 * @count: number of blocks to count 4467 * @flags: flags used by ext4_free_blocks 4468 */ 4469 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4470 struct buffer_head *bh, ext4_fsblk_t block, 4471 unsigned long count, int flags) 4472 { 4473 struct buffer_head *bitmap_bh = NULL; 4474 struct super_block *sb = inode->i_sb; 4475 struct ext4_group_desc *gdp; 4476 unsigned long freed = 0; 4477 unsigned int overflow; 4478 ext4_grpblk_t bit; 4479 struct buffer_head *gd_bh; 4480 ext4_group_t block_group; 4481 struct ext4_sb_info *sbi; 4482 struct ext4_buddy e4b; 4483 unsigned int count_clusters; 4484 int err = 0; 4485 int ret; 4486 4487 if (bh) { 4488 if (block) 4489 BUG_ON(block != bh->b_blocknr); 4490 else 4491 block = bh->b_blocknr; 4492 } 4493 4494 sbi = EXT4_SB(sb); 4495 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4496 !ext4_data_block_valid(sbi, block, count)) { 4497 ext4_error(sb, "Freeing blocks not in datazone - " 4498 "block = %llu, count = %lu", block, count); 4499 goto error_return; 4500 } 4501 4502 ext4_debug("freeing block %llu\n", block); 4503 trace_ext4_free_blocks(inode, block, count, flags); 4504 4505 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4506 struct buffer_head *tbh = bh; 4507 int i; 4508 4509 BUG_ON(bh && (count > 1)); 4510 4511 for (i = 0; i < count; i++) { 4512 if (!bh) 4513 tbh = sb_find_get_block(inode->i_sb, 4514 block + i); 4515 if (unlikely(!tbh)) 4516 continue; 4517 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4518 inode, tbh, block + i); 4519 } 4520 } 4521 4522 /* 4523 * We need to make sure we don't reuse the freed block until 4524 * after the transaction is committed, which we can do by 4525 * treating the block as metadata, below. We make an 4526 * exception if the inode is to be written in writeback mode 4527 * since writeback mode has weak data consistency guarantees. 4528 */ 4529 if (!ext4_should_writeback_data(inode)) 4530 flags |= EXT4_FREE_BLOCKS_METADATA; 4531 4532 /* 4533 * If the extent to be freed does not begin on a cluster 4534 * boundary, we need to deal with partial clusters at the 4535 * beginning and end of the extent. Normally we will free 4536 * blocks at the beginning or the end unless we are explicitly 4537 * requested to avoid doing so. 4538 */ 4539 overflow = block & (sbi->s_cluster_ratio - 1); 4540 if (overflow) { 4541 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4542 overflow = sbi->s_cluster_ratio - overflow; 4543 block += overflow; 4544 if (count > overflow) 4545 count -= overflow; 4546 else 4547 return; 4548 } else { 4549 block -= overflow; 4550 count += overflow; 4551 } 4552 } 4553 overflow = count & (sbi->s_cluster_ratio - 1); 4554 if (overflow) { 4555 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4556 if (count > overflow) 4557 count -= overflow; 4558 else 4559 return; 4560 } else 4561 count += sbi->s_cluster_ratio - overflow; 4562 } 4563 4564 do_more: 4565 overflow = 0; 4566 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4567 4568 /* 4569 * Check to see if we are freeing blocks across a group 4570 * boundary. 4571 */ 4572 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4573 overflow = EXT4_C2B(sbi, bit) + count - 4574 EXT4_BLOCKS_PER_GROUP(sb); 4575 count -= overflow; 4576 } 4577 count_clusters = EXT4_B2C(sbi, count); 4578 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4579 if (!bitmap_bh) { 4580 err = -EIO; 4581 goto error_return; 4582 } 4583 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4584 if (!gdp) { 4585 err = -EIO; 4586 goto error_return; 4587 } 4588 4589 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4590 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4591 in_range(block, ext4_inode_table(sb, gdp), 4592 EXT4_SB(sb)->s_itb_per_group) || 4593 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4594 EXT4_SB(sb)->s_itb_per_group)) { 4595 4596 ext4_error(sb, "Freeing blocks in system zone - " 4597 "Block = %llu, count = %lu", block, count); 4598 /* err = 0. ext4_std_error should be a no op */ 4599 goto error_return; 4600 } 4601 4602 BUFFER_TRACE(bitmap_bh, "getting write access"); 4603 err = ext4_journal_get_write_access(handle, bitmap_bh); 4604 if (err) 4605 goto error_return; 4606 4607 /* 4608 * We are about to modify some metadata. Call the journal APIs 4609 * to unshare ->b_data if a currently-committing transaction is 4610 * using it 4611 */ 4612 BUFFER_TRACE(gd_bh, "get_write_access"); 4613 err = ext4_journal_get_write_access(handle, gd_bh); 4614 if (err) 4615 goto error_return; 4616 #ifdef AGGRESSIVE_CHECK 4617 { 4618 int i; 4619 for (i = 0; i < count_clusters; i++) 4620 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4621 } 4622 #endif 4623 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4624 4625 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4626 if (err) 4627 goto error_return; 4628 4629 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4630 struct ext4_free_data *new_entry; 4631 /* 4632 * blocks being freed are metadata. these blocks shouldn't 4633 * be used until this transaction is committed 4634 */ 4635 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4636 if (!new_entry) { 4637 err = -ENOMEM; 4638 goto error_return; 4639 } 4640 new_entry->efd_start_cluster = bit; 4641 new_entry->efd_group = block_group; 4642 new_entry->efd_count = count_clusters; 4643 new_entry->efd_tid = handle->h_transaction->t_tid; 4644 4645 ext4_lock_group(sb, block_group); 4646 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4647 ext4_mb_free_metadata(handle, &e4b, new_entry); 4648 } else { 4649 /* need to update group_info->bb_free and bitmap 4650 * with group lock held. generate_buddy look at 4651 * them with group lock_held 4652 */ 4653 ext4_lock_group(sb, block_group); 4654 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4655 mb_free_blocks(inode, &e4b, bit, count_clusters); 4656 } 4657 4658 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4659 ext4_free_group_clusters_set(sb, gdp, ret); 4660 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 4661 EXT4_BLOCKS_PER_GROUP(sb) / 8); 4662 ext4_group_desc_csum_set(sb, block_group, gdp); 4663 ext4_unlock_group(sb, block_group); 4664 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4665 4666 if (sbi->s_log_groups_per_flex) { 4667 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4668 atomic_add(count_clusters, 4669 &sbi->s_flex_groups[flex_group].free_clusters); 4670 } 4671 4672 ext4_mb_unload_buddy(&e4b); 4673 4674 freed += count; 4675 4676 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4677 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4678 4679 /* We dirtied the bitmap block */ 4680 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4681 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4682 4683 /* And the group descriptor block */ 4684 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4685 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4686 if (!err) 4687 err = ret; 4688 4689 if (overflow && !err) { 4690 block += count; 4691 count = overflow; 4692 put_bh(bitmap_bh); 4693 goto do_more; 4694 } 4695 ext4_mark_super_dirty(sb); 4696 error_return: 4697 brelse(bitmap_bh); 4698 ext4_std_error(sb, err); 4699 return; 4700 } 4701 4702 /** 4703 * ext4_group_add_blocks() -- Add given blocks to an existing group 4704 * @handle: handle to this transaction 4705 * @sb: super block 4706 * @block: start physcial block to add to the block group 4707 * @count: number of blocks to free 4708 * 4709 * This marks the blocks as free in the bitmap and buddy. 4710 */ 4711 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4712 ext4_fsblk_t block, unsigned long count) 4713 { 4714 struct buffer_head *bitmap_bh = NULL; 4715 struct buffer_head *gd_bh; 4716 ext4_group_t block_group; 4717 ext4_grpblk_t bit; 4718 unsigned int i; 4719 struct ext4_group_desc *desc; 4720 struct ext4_sb_info *sbi = EXT4_SB(sb); 4721 struct ext4_buddy e4b; 4722 int err = 0, ret, blk_free_count; 4723 ext4_grpblk_t blocks_freed; 4724 4725 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4726 4727 if (count == 0) 4728 return 0; 4729 4730 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4731 /* 4732 * Check to see if we are freeing blocks across a group 4733 * boundary. 4734 */ 4735 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4736 ext4_warning(sb, "too much blocks added to group %u\n", 4737 block_group); 4738 err = -EINVAL; 4739 goto error_return; 4740 } 4741 4742 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4743 if (!bitmap_bh) { 4744 err = -EIO; 4745 goto error_return; 4746 } 4747 4748 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4749 if (!desc) { 4750 err = -EIO; 4751 goto error_return; 4752 } 4753 4754 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4755 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4756 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4757 in_range(block + count - 1, ext4_inode_table(sb, desc), 4758 sbi->s_itb_per_group)) { 4759 ext4_error(sb, "Adding blocks in system zones - " 4760 "Block = %llu, count = %lu", 4761 block, count); 4762 err = -EINVAL; 4763 goto error_return; 4764 } 4765 4766 BUFFER_TRACE(bitmap_bh, "getting write access"); 4767 err = ext4_journal_get_write_access(handle, bitmap_bh); 4768 if (err) 4769 goto error_return; 4770 4771 /* 4772 * We are about to modify some metadata. Call the journal APIs 4773 * to unshare ->b_data if a currently-committing transaction is 4774 * using it 4775 */ 4776 BUFFER_TRACE(gd_bh, "get_write_access"); 4777 err = ext4_journal_get_write_access(handle, gd_bh); 4778 if (err) 4779 goto error_return; 4780 4781 for (i = 0, blocks_freed = 0; i < count; i++) { 4782 BUFFER_TRACE(bitmap_bh, "clear bit"); 4783 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4784 ext4_error(sb, "bit already cleared for block %llu", 4785 (ext4_fsblk_t)(block + i)); 4786 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4787 } else { 4788 blocks_freed++; 4789 } 4790 } 4791 4792 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4793 if (err) 4794 goto error_return; 4795 4796 /* 4797 * need to update group_info->bb_free and bitmap 4798 * with group lock held. generate_buddy look at 4799 * them with group lock_held 4800 */ 4801 ext4_lock_group(sb, block_group); 4802 mb_clear_bits(bitmap_bh->b_data, bit, count); 4803 mb_free_blocks(NULL, &e4b, bit, count); 4804 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4805 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4806 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh, 4807 EXT4_BLOCKS_PER_GROUP(sb) / 8); 4808 ext4_group_desc_csum_set(sb, block_group, desc); 4809 ext4_unlock_group(sb, block_group); 4810 percpu_counter_add(&sbi->s_freeclusters_counter, 4811 EXT4_B2C(sbi, blocks_freed)); 4812 4813 if (sbi->s_log_groups_per_flex) { 4814 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4815 atomic_add(EXT4_B2C(sbi, blocks_freed), 4816 &sbi->s_flex_groups[flex_group].free_clusters); 4817 } 4818 4819 ext4_mb_unload_buddy(&e4b); 4820 4821 /* We dirtied the bitmap block */ 4822 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4823 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4824 4825 /* And the group descriptor block */ 4826 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4827 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4828 if (!err) 4829 err = ret; 4830 4831 error_return: 4832 brelse(bitmap_bh); 4833 ext4_std_error(sb, err); 4834 return err; 4835 } 4836 4837 /** 4838 * ext4_trim_extent -- function to TRIM one single free extent in the group 4839 * @sb: super block for the file system 4840 * @start: starting block of the free extent in the alloc. group 4841 * @count: number of blocks to TRIM 4842 * @group: alloc. group we are working with 4843 * @e4b: ext4 buddy for the group 4844 * 4845 * Trim "count" blocks starting at "start" in the "group". To assure that no 4846 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4847 * be called with under the group lock. 4848 */ 4849 static void ext4_trim_extent(struct super_block *sb, int start, int count, 4850 ext4_group_t group, struct ext4_buddy *e4b) 4851 { 4852 struct ext4_free_extent ex; 4853 4854 trace_ext4_trim_extent(sb, group, start, count); 4855 4856 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4857 4858 ex.fe_start = start; 4859 ex.fe_group = group; 4860 ex.fe_len = count; 4861 4862 /* 4863 * Mark blocks used, so no one can reuse them while 4864 * being trimmed. 4865 */ 4866 mb_mark_used(e4b, &ex); 4867 ext4_unlock_group(sb, group); 4868 ext4_issue_discard(sb, group, start, count); 4869 ext4_lock_group(sb, group); 4870 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4871 } 4872 4873 /** 4874 * ext4_trim_all_free -- function to trim all free space in alloc. group 4875 * @sb: super block for file system 4876 * @group: group to be trimmed 4877 * @start: first group block to examine 4878 * @max: last group block to examine 4879 * @minblocks: minimum extent block count 4880 * 4881 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4882 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4883 * the extent. 4884 * 4885 * 4886 * ext4_trim_all_free walks through group's block bitmap searching for free 4887 * extents. When the free extent is found, mark it as used in group buddy 4888 * bitmap. Then issue a TRIM command on this extent and free the extent in 4889 * the group buddy bitmap. This is done until whole group is scanned. 4890 */ 4891 static ext4_grpblk_t 4892 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4893 ext4_grpblk_t start, ext4_grpblk_t max, 4894 ext4_grpblk_t minblocks) 4895 { 4896 void *bitmap; 4897 ext4_grpblk_t next, count = 0, free_count = 0; 4898 struct ext4_buddy e4b; 4899 int ret; 4900 4901 trace_ext4_trim_all_free(sb, group, start, max); 4902 4903 ret = ext4_mb_load_buddy(sb, group, &e4b); 4904 if (ret) { 4905 ext4_error(sb, "Error in loading buddy " 4906 "information for %u", group); 4907 return ret; 4908 } 4909 bitmap = e4b.bd_bitmap; 4910 4911 ext4_lock_group(sb, group); 4912 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 4913 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 4914 goto out; 4915 4916 start = (e4b.bd_info->bb_first_free > start) ? 4917 e4b.bd_info->bb_first_free : start; 4918 4919 while (start <= max) { 4920 start = mb_find_next_zero_bit(bitmap, max + 1, start); 4921 if (start > max) 4922 break; 4923 next = mb_find_next_bit(bitmap, max + 1, start); 4924 4925 if ((next - start) >= minblocks) { 4926 ext4_trim_extent(sb, start, 4927 next - start, group, &e4b); 4928 count += next - start; 4929 } 4930 free_count += next - start; 4931 start = next + 1; 4932 4933 if (fatal_signal_pending(current)) { 4934 count = -ERESTARTSYS; 4935 break; 4936 } 4937 4938 if (need_resched()) { 4939 ext4_unlock_group(sb, group); 4940 cond_resched(); 4941 ext4_lock_group(sb, group); 4942 } 4943 4944 if ((e4b.bd_info->bb_free - free_count) < minblocks) 4945 break; 4946 } 4947 4948 if (!ret) 4949 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 4950 out: 4951 ext4_unlock_group(sb, group); 4952 ext4_mb_unload_buddy(&e4b); 4953 4954 ext4_debug("trimmed %d blocks in the group %d\n", 4955 count, group); 4956 4957 return count; 4958 } 4959 4960 /** 4961 * ext4_trim_fs() -- trim ioctl handle function 4962 * @sb: superblock for filesystem 4963 * @range: fstrim_range structure 4964 * 4965 * start: First Byte to trim 4966 * len: number of Bytes to trim from start 4967 * minlen: minimum extent length in Bytes 4968 * ext4_trim_fs goes through all allocation groups containing Bytes from 4969 * start to start+len. For each such a group ext4_trim_all_free function 4970 * is invoked to trim all free space. 4971 */ 4972 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4973 { 4974 struct ext4_group_info *grp; 4975 ext4_group_t group, first_group, last_group; 4976 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 4977 uint64_t start, end, minlen, trimmed = 0; 4978 ext4_fsblk_t first_data_blk = 4979 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4980 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 4981 int ret = 0; 4982 4983 start = range->start >> sb->s_blocksize_bits; 4984 end = start + (range->len >> sb->s_blocksize_bits) - 1; 4985 minlen = range->minlen >> sb->s_blocksize_bits; 4986 4987 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) || 4988 unlikely(start >= max_blks)) 4989 return -EINVAL; 4990 if (end >= max_blks) 4991 end = max_blks - 1; 4992 if (end <= first_data_blk) 4993 goto out; 4994 if (start < first_data_blk) 4995 start = first_data_blk; 4996 4997 /* Determine first and last group to examine based on start and end */ 4998 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 4999 &first_group, &first_cluster); 5000 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5001 &last_group, &last_cluster); 5002 5003 /* end now represents the last cluster to discard in this group */ 5004 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5005 5006 for (group = first_group; group <= last_group; group++) { 5007 grp = ext4_get_group_info(sb, group); 5008 /* We only do this if the grp has never been initialized */ 5009 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5010 ret = ext4_mb_init_group(sb, group); 5011 if (ret) 5012 break; 5013 } 5014 5015 /* 5016 * For all the groups except the last one, last cluster will 5017 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5018 * change it for the last group, note that last_cluster is 5019 * already computed earlier by ext4_get_group_no_and_offset() 5020 */ 5021 if (group == last_group) 5022 end = last_cluster; 5023 5024 if (grp->bb_free >= minlen) { 5025 cnt = ext4_trim_all_free(sb, group, first_cluster, 5026 end, minlen); 5027 if (cnt < 0) { 5028 ret = cnt; 5029 break; 5030 } 5031 trimmed += cnt; 5032 } 5033 5034 /* 5035 * For every group except the first one, we are sure 5036 * that the first cluster to discard will be cluster #0. 5037 */ 5038 first_cluster = 0; 5039 } 5040 5041 if (!ret) 5042 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5043 5044 out: 5045 range->len = trimmed * sb->s_blocksize; 5046 return ret; 5047 } 5048