1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/tcp_memcontrol.h> 55 56 #include <asm/uaccess.h> 57 58 #include <trace/events/vmscan.h> 59 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 61 #define MEM_CGROUP_RECLAIM_RETRIES 5 62 static struct mem_cgroup *root_mem_cgroup __read_mostly; 63 64 #ifdef CONFIG_MEMCG_SWAP 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 66 int do_swap_account __read_mostly; 67 68 /* for remember boot option*/ 69 #ifdef CONFIG_MEMCG_SWAP_ENABLED 70 static int really_do_swap_account __initdata = 1; 71 #else 72 static int really_do_swap_account __initdata = 0; 73 #endif 74 75 #else 76 #define do_swap_account 0 77 #endif 78 79 80 /* 81 * Statistics for memory cgroup. 82 */ 83 enum mem_cgroup_stat_index { 84 /* 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 86 */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 91 MEM_CGROUP_STAT_NSTATS, 92 }; 93 94 static const char * const mem_cgroup_stat_names[] = { 95 "cache", 96 "rss", 97 "mapped_file", 98 "swap", 99 }; 100 101 enum mem_cgroup_events_index { 102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 106 MEM_CGROUP_EVENTS_NSTATS, 107 }; 108 109 static const char * const mem_cgroup_events_names[] = { 110 "pgpgin", 111 "pgpgout", 112 "pgfault", 113 "pgmajfault", 114 }; 115 116 /* 117 * Per memcg event counter is incremented at every pagein/pageout. With THP, 118 * it will be incremated by the number of pages. This counter is used for 119 * for trigger some periodic events. This is straightforward and better 120 * than using jiffies etc. to handle periodic memcg event. 121 */ 122 enum mem_cgroup_events_target { 123 MEM_CGROUP_TARGET_THRESH, 124 MEM_CGROUP_TARGET_SOFTLIMIT, 125 MEM_CGROUP_TARGET_NUMAINFO, 126 MEM_CGROUP_NTARGETS, 127 }; 128 #define THRESHOLDS_EVENTS_TARGET 128 129 #define SOFTLIMIT_EVENTS_TARGET 1024 130 #define NUMAINFO_EVENTS_TARGET 1024 131 132 struct mem_cgroup_stat_cpu { 133 long count[MEM_CGROUP_STAT_NSTATS]; 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 135 unsigned long nr_page_events; 136 unsigned long targets[MEM_CGROUP_NTARGETS]; 137 }; 138 139 struct mem_cgroup_reclaim_iter { 140 /* css_id of the last scanned hierarchy member */ 141 int position; 142 /* scan generation, increased every round-trip */ 143 unsigned int generation; 144 }; 145 146 /* 147 * per-zone information in memory controller. 148 */ 149 struct mem_cgroup_per_zone { 150 struct lruvec lruvec; 151 unsigned long lru_size[NR_LRU_LISTS]; 152 153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 154 155 struct rb_node tree_node; /* RB tree node */ 156 unsigned long long usage_in_excess;/* Set to the value by which */ 157 /* the soft limit is exceeded*/ 158 bool on_tree; 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 160 /* use container_of */ 161 }; 162 163 struct mem_cgroup_per_node { 164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 165 }; 166 167 struct mem_cgroup_lru_info { 168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 169 }; 170 171 /* 172 * Cgroups above their limits are maintained in a RB-Tree, independent of 173 * their hierarchy representation 174 */ 175 176 struct mem_cgroup_tree_per_zone { 177 struct rb_root rb_root; 178 spinlock_t lock; 179 }; 180 181 struct mem_cgroup_tree_per_node { 182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 183 }; 184 185 struct mem_cgroup_tree { 186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 187 }; 188 189 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 190 191 struct mem_cgroup_threshold { 192 struct eventfd_ctx *eventfd; 193 u64 threshold; 194 }; 195 196 /* For threshold */ 197 struct mem_cgroup_threshold_ary { 198 /* An array index points to threshold just below or equal to usage. */ 199 int current_threshold; 200 /* Size of entries[] */ 201 unsigned int size; 202 /* Array of thresholds */ 203 struct mem_cgroup_threshold entries[0]; 204 }; 205 206 struct mem_cgroup_thresholds { 207 /* Primary thresholds array */ 208 struct mem_cgroup_threshold_ary *primary; 209 /* 210 * Spare threshold array. 211 * This is needed to make mem_cgroup_unregister_event() "never fail". 212 * It must be able to store at least primary->size - 1 entries. 213 */ 214 struct mem_cgroup_threshold_ary *spare; 215 }; 216 217 /* for OOM */ 218 struct mem_cgroup_eventfd_list { 219 struct list_head list; 220 struct eventfd_ctx *eventfd; 221 }; 222 223 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 225 226 /* 227 * The memory controller data structure. The memory controller controls both 228 * page cache and RSS per cgroup. We would eventually like to provide 229 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 230 * to help the administrator determine what knobs to tune. 231 * 232 * TODO: Add a water mark for the memory controller. Reclaim will begin when 233 * we hit the water mark. May be even add a low water mark, such that 234 * no reclaim occurs from a cgroup at it's low water mark, this is 235 * a feature that will be implemented much later in the future. 236 */ 237 struct mem_cgroup { 238 struct cgroup_subsys_state css; 239 /* 240 * the counter to account for memory usage 241 */ 242 struct res_counter res; 243 244 union { 245 /* 246 * the counter to account for mem+swap usage. 247 */ 248 struct res_counter memsw; 249 250 /* 251 * rcu_freeing is used only when freeing struct mem_cgroup, 252 * so put it into a union to avoid wasting more memory. 253 * It must be disjoint from the css field. It could be 254 * in a union with the res field, but res plays a much 255 * larger part in mem_cgroup life than memsw, and might 256 * be of interest, even at time of free, when debugging. 257 * So share rcu_head with the less interesting memsw. 258 */ 259 struct rcu_head rcu_freeing; 260 /* 261 * We also need some space for a worker in deferred freeing. 262 * By the time we call it, rcu_freeing is no longer in use. 263 */ 264 struct work_struct work_freeing; 265 }; 266 267 /* 268 * Per cgroup active and inactive list, similar to the 269 * per zone LRU lists. 270 */ 271 struct mem_cgroup_lru_info info; 272 int last_scanned_node; 273 #if MAX_NUMNODES > 1 274 nodemask_t scan_nodes; 275 atomic_t numainfo_events; 276 atomic_t numainfo_updating; 277 #endif 278 /* 279 * Should the accounting and control be hierarchical, per subtree? 280 */ 281 bool use_hierarchy; 282 283 bool oom_lock; 284 atomic_t under_oom; 285 286 atomic_t refcnt; 287 288 int swappiness; 289 /* OOM-Killer disable */ 290 int oom_kill_disable; 291 292 /* set when res.limit == memsw.limit */ 293 bool memsw_is_minimum; 294 295 /* protect arrays of thresholds */ 296 struct mutex thresholds_lock; 297 298 /* thresholds for memory usage. RCU-protected */ 299 struct mem_cgroup_thresholds thresholds; 300 301 /* thresholds for mem+swap usage. RCU-protected */ 302 struct mem_cgroup_thresholds memsw_thresholds; 303 304 /* For oom notifier event fd */ 305 struct list_head oom_notify; 306 307 /* 308 * Should we move charges of a task when a task is moved into this 309 * mem_cgroup ? And what type of charges should we move ? 310 */ 311 unsigned long move_charge_at_immigrate; 312 /* 313 * set > 0 if pages under this cgroup are moving to other cgroup. 314 */ 315 atomic_t moving_account; 316 /* taken only while moving_account > 0 */ 317 spinlock_t move_lock; 318 /* 319 * percpu counter. 320 */ 321 struct mem_cgroup_stat_cpu __percpu *stat; 322 /* 323 * used when a cpu is offlined or other synchronizations 324 * See mem_cgroup_read_stat(). 325 */ 326 struct mem_cgroup_stat_cpu nocpu_base; 327 spinlock_t pcp_counter_lock; 328 329 #ifdef CONFIG_INET 330 struct tcp_memcontrol tcp_mem; 331 #endif 332 }; 333 334 /* Stuffs for move charges at task migration. */ 335 /* 336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 337 * left-shifted bitmap of these types. 338 */ 339 enum move_type { 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 342 NR_MOVE_TYPE, 343 }; 344 345 /* "mc" and its members are protected by cgroup_mutex */ 346 static struct move_charge_struct { 347 spinlock_t lock; /* for from, to */ 348 struct mem_cgroup *from; 349 struct mem_cgroup *to; 350 unsigned long precharge; 351 unsigned long moved_charge; 352 unsigned long moved_swap; 353 struct task_struct *moving_task; /* a task moving charges */ 354 wait_queue_head_t waitq; /* a waitq for other context */ 355 } mc = { 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 358 }; 359 360 static bool move_anon(void) 361 { 362 return test_bit(MOVE_CHARGE_TYPE_ANON, 363 &mc.to->move_charge_at_immigrate); 364 } 365 366 static bool move_file(void) 367 { 368 return test_bit(MOVE_CHARGE_TYPE_FILE, 369 &mc.to->move_charge_at_immigrate); 370 } 371 372 /* 373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 374 * limit reclaim to prevent infinite loops, if they ever occur. 375 */ 376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 378 379 enum charge_type { 380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 381 MEM_CGROUP_CHARGE_TYPE_ANON, 382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 384 NR_CHARGE_TYPE, 385 }; 386 387 /* for encoding cft->private value on file */ 388 #define _MEM (0) 389 #define _MEMSWAP (1) 390 #define _OOM_TYPE (2) 391 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 392 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 393 #define MEMFILE_ATTR(val) ((val) & 0xffff) 394 /* Used for OOM nofiier */ 395 #define OOM_CONTROL (0) 396 397 /* 398 * Reclaim flags for mem_cgroup_hierarchical_reclaim 399 */ 400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 401 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 403 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 404 405 static void mem_cgroup_get(struct mem_cgroup *memcg); 406 static void mem_cgroup_put(struct mem_cgroup *memcg); 407 408 /* Writing them here to avoid exposing memcg's inner layout */ 409 #ifdef CONFIG_MEMCG_KMEM 410 #include <net/sock.h> 411 #include <net/ip.h> 412 413 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 414 void sock_update_memcg(struct sock *sk) 415 { 416 if (mem_cgroup_sockets_enabled) { 417 struct mem_cgroup *memcg; 418 struct cg_proto *cg_proto; 419 420 BUG_ON(!sk->sk_prot->proto_cgroup); 421 422 /* Socket cloning can throw us here with sk_cgrp already 423 * filled. It won't however, necessarily happen from 424 * process context. So the test for root memcg given 425 * the current task's memcg won't help us in this case. 426 * 427 * Respecting the original socket's memcg is a better 428 * decision in this case. 429 */ 430 if (sk->sk_cgrp) { 431 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 432 mem_cgroup_get(sk->sk_cgrp->memcg); 433 return; 434 } 435 436 rcu_read_lock(); 437 memcg = mem_cgroup_from_task(current); 438 cg_proto = sk->sk_prot->proto_cgroup(memcg); 439 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 440 mem_cgroup_get(memcg); 441 sk->sk_cgrp = cg_proto; 442 } 443 rcu_read_unlock(); 444 } 445 } 446 EXPORT_SYMBOL(sock_update_memcg); 447 448 void sock_release_memcg(struct sock *sk) 449 { 450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 451 struct mem_cgroup *memcg; 452 WARN_ON(!sk->sk_cgrp->memcg); 453 memcg = sk->sk_cgrp->memcg; 454 mem_cgroup_put(memcg); 455 } 456 } 457 458 #ifdef CONFIG_INET 459 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 460 { 461 if (!memcg || mem_cgroup_is_root(memcg)) 462 return NULL; 463 464 return &memcg->tcp_mem.cg_proto; 465 } 466 EXPORT_SYMBOL(tcp_proto_cgroup); 467 #endif /* CONFIG_INET */ 468 #endif /* CONFIG_MEMCG_KMEM */ 469 470 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 471 static void disarm_sock_keys(struct mem_cgroup *memcg) 472 { 473 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 474 return; 475 static_key_slow_dec(&memcg_socket_limit_enabled); 476 } 477 #else 478 static void disarm_sock_keys(struct mem_cgroup *memcg) 479 { 480 } 481 #endif 482 483 static void drain_all_stock_async(struct mem_cgroup *memcg); 484 485 static struct mem_cgroup_per_zone * 486 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 487 { 488 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 489 } 490 491 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 492 { 493 return &memcg->css; 494 } 495 496 static struct mem_cgroup_per_zone * 497 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 498 { 499 int nid = page_to_nid(page); 500 int zid = page_zonenum(page); 501 502 return mem_cgroup_zoneinfo(memcg, nid, zid); 503 } 504 505 static struct mem_cgroup_tree_per_zone * 506 soft_limit_tree_node_zone(int nid, int zid) 507 { 508 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 509 } 510 511 static struct mem_cgroup_tree_per_zone * 512 soft_limit_tree_from_page(struct page *page) 513 { 514 int nid = page_to_nid(page); 515 int zid = page_zonenum(page); 516 517 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 518 } 519 520 static void 521 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 522 struct mem_cgroup_per_zone *mz, 523 struct mem_cgroup_tree_per_zone *mctz, 524 unsigned long long new_usage_in_excess) 525 { 526 struct rb_node **p = &mctz->rb_root.rb_node; 527 struct rb_node *parent = NULL; 528 struct mem_cgroup_per_zone *mz_node; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) 541 p = &(*p)->rb_left; 542 /* 543 * We can't avoid mem cgroups that are over their soft 544 * limit by the same amount 545 */ 546 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 547 p = &(*p)->rb_right; 548 } 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void 555 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 556 struct mem_cgroup_per_zone *mz, 557 struct mem_cgroup_tree_per_zone *mctz) 558 { 559 if (!mz->on_tree) 560 return; 561 rb_erase(&mz->tree_node, &mctz->rb_root); 562 mz->on_tree = false; 563 } 564 565 static void 566 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 567 struct mem_cgroup_per_zone *mz, 568 struct mem_cgroup_tree_per_zone *mctz) 569 { 570 spin_lock(&mctz->lock); 571 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 572 spin_unlock(&mctz->lock); 573 } 574 575 576 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 577 { 578 unsigned long long excess; 579 struct mem_cgroup_per_zone *mz; 580 struct mem_cgroup_tree_per_zone *mctz; 581 int nid = page_to_nid(page); 582 int zid = page_zonenum(page); 583 mctz = soft_limit_tree_from_page(page); 584 585 /* 586 * Necessary to update all ancestors when hierarchy is used. 587 * because their event counter is not touched. 588 */ 589 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 590 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 591 excess = res_counter_soft_limit_excess(&memcg->res); 592 /* 593 * We have to update the tree if mz is on RB-tree or 594 * mem is over its softlimit. 595 */ 596 if (excess || mz->on_tree) { 597 spin_lock(&mctz->lock); 598 /* if on-tree, remove it */ 599 if (mz->on_tree) 600 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 601 /* 602 * Insert again. mz->usage_in_excess will be updated. 603 * If excess is 0, no tree ops. 604 */ 605 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 606 spin_unlock(&mctz->lock); 607 } 608 } 609 } 610 611 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 612 { 613 int node, zone; 614 struct mem_cgroup_per_zone *mz; 615 struct mem_cgroup_tree_per_zone *mctz; 616 617 for_each_node(node) { 618 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 619 mz = mem_cgroup_zoneinfo(memcg, node, zone); 620 mctz = soft_limit_tree_node_zone(node, zone); 621 mem_cgroup_remove_exceeded(memcg, mz, mctz); 622 } 623 } 624 } 625 626 static struct mem_cgroup_per_zone * 627 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 628 { 629 struct rb_node *rightmost = NULL; 630 struct mem_cgroup_per_zone *mz; 631 632 retry: 633 mz = NULL; 634 rightmost = rb_last(&mctz->rb_root); 635 if (!rightmost) 636 goto done; /* Nothing to reclaim from */ 637 638 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 639 /* 640 * Remove the node now but someone else can add it back, 641 * we will to add it back at the end of reclaim to its correct 642 * position in the tree. 643 */ 644 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 645 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 646 !css_tryget(&mz->memcg->css)) 647 goto retry; 648 done: 649 return mz; 650 } 651 652 static struct mem_cgroup_per_zone * 653 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 654 { 655 struct mem_cgroup_per_zone *mz; 656 657 spin_lock(&mctz->lock); 658 mz = __mem_cgroup_largest_soft_limit_node(mctz); 659 spin_unlock(&mctz->lock); 660 return mz; 661 } 662 663 /* 664 * Implementation Note: reading percpu statistics for memcg. 665 * 666 * Both of vmstat[] and percpu_counter has threshold and do periodic 667 * synchronization to implement "quick" read. There are trade-off between 668 * reading cost and precision of value. Then, we may have a chance to implement 669 * a periodic synchronizion of counter in memcg's counter. 670 * 671 * But this _read() function is used for user interface now. The user accounts 672 * memory usage by memory cgroup and he _always_ requires exact value because 673 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 674 * have to visit all online cpus and make sum. So, for now, unnecessary 675 * synchronization is not implemented. (just implemented for cpu hotplug) 676 * 677 * If there are kernel internal actions which can make use of some not-exact 678 * value, and reading all cpu value can be performance bottleneck in some 679 * common workload, threashold and synchonization as vmstat[] should be 680 * implemented. 681 */ 682 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 683 enum mem_cgroup_stat_index idx) 684 { 685 long val = 0; 686 int cpu; 687 688 get_online_cpus(); 689 for_each_online_cpu(cpu) 690 val += per_cpu(memcg->stat->count[idx], cpu); 691 #ifdef CONFIG_HOTPLUG_CPU 692 spin_lock(&memcg->pcp_counter_lock); 693 val += memcg->nocpu_base.count[idx]; 694 spin_unlock(&memcg->pcp_counter_lock); 695 #endif 696 put_online_cpus(); 697 return val; 698 } 699 700 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 701 bool charge) 702 { 703 int val = (charge) ? 1 : -1; 704 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 705 } 706 707 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 708 enum mem_cgroup_events_index idx) 709 { 710 unsigned long val = 0; 711 int cpu; 712 713 for_each_online_cpu(cpu) 714 val += per_cpu(memcg->stat->events[idx], cpu); 715 #ifdef CONFIG_HOTPLUG_CPU 716 spin_lock(&memcg->pcp_counter_lock); 717 val += memcg->nocpu_base.events[idx]; 718 spin_unlock(&memcg->pcp_counter_lock); 719 #endif 720 return val; 721 } 722 723 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 724 bool anon, int nr_pages) 725 { 726 preempt_disable(); 727 728 /* 729 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 730 * counted as CACHE even if it's on ANON LRU. 731 */ 732 if (anon) 733 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 734 nr_pages); 735 else 736 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 737 nr_pages); 738 739 /* pagein of a big page is an event. So, ignore page size */ 740 if (nr_pages > 0) 741 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 742 else { 743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 744 nr_pages = -nr_pages; /* for event */ 745 } 746 747 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 748 749 preempt_enable(); 750 } 751 752 unsigned long 753 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 754 { 755 struct mem_cgroup_per_zone *mz; 756 757 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 758 return mz->lru_size[lru]; 759 } 760 761 static unsigned long 762 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 763 unsigned int lru_mask) 764 { 765 struct mem_cgroup_per_zone *mz; 766 enum lru_list lru; 767 unsigned long ret = 0; 768 769 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 770 771 for_each_lru(lru) { 772 if (BIT(lru) & lru_mask) 773 ret += mz->lru_size[lru]; 774 } 775 return ret; 776 } 777 778 static unsigned long 779 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 780 int nid, unsigned int lru_mask) 781 { 782 u64 total = 0; 783 int zid; 784 785 for (zid = 0; zid < MAX_NR_ZONES; zid++) 786 total += mem_cgroup_zone_nr_lru_pages(memcg, 787 nid, zid, lru_mask); 788 789 return total; 790 } 791 792 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 793 unsigned int lru_mask) 794 { 795 int nid; 796 u64 total = 0; 797 798 for_each_node_state(nid, N_HIGH_MEMORY) 799 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 800 return total; 801 } 802 803 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 804 enum mem_cgroup_events_target target) 805 { 806 unsigned long val, next; 807 808 val = __this_cpu_read(memcg->stat->nr_page_events); 809 next = __this_cpu_read(memcg->stat->targets[target]); 810 /* from time_after() in jiffies.h */ 811 if ((long)next - (long)val < 0) { 812 switch (target) { 813 case MEM_CGROUP_TARGET_THRESH: 814 next = val + THRESHOLDS_EVENTS_TARGET; 815 break; 816 case MEM_CGROUP_TARGET_SOFTLIMIT: 817 next = val + SOFTLIMIT_EVENTS_TARGET; 818 break; 819 case MEM_CGROUP_TARGET_NUMAINFO: 820 next = val + NUMAINFO_EVENTS_TARGET; 821 break; 822 default: 823 break; 824 } 825 __this_cpu_write(memcg->stat->targets[target], next); 826 return true; 827 } 828 return false; 829 } 830 831 /* 832 * Check events in order. 833 * 834 */ 835 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 836 { 837 preempt_disable(); 838 /* threshold event is triggered in finer grain than soft limit */ 839 if (unlikely(mem_cgroup_event_ratelimit(memcg, 840 MEM_CGROUP_TARGET_THRESH))) { 841 bool do_softlimit; 842 bool do_numainfo __maybe_unused; 843 844 do_softlimit = mem_cgroup_event_ratelimit(memcg, 845 MEM_CGROUP_TARGET_SOFTLIMIT); 846 #if MAX_NUMNODES > 1 847 do_numainfo = mem_cgroup_event_ratelimit(memcg, 848 MEM_CGROUP_TARGET_NUMAINFO); 849 #endif 850 preempt_enable(); 851 852 mem_cgroup_threshold(memcg); 853 if (unlikely(do_softlimit)) 854 mem_cgroup_update_tree(memcg, page); 855 #if MAX_NUMNODES > 1 856 if (unlikely(do_numainfo)) 857 atomic_inc(&memcg->numainfo_events); 858 #endif 859 } else 860 preempt_enable(); 861 } 862 863 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 864 { 865 return container_of(cgroup_subsys_state(cont, 866 mem_cgroup_subsys_id), struct mem_cgroup, 867 css); 868 } 869 870 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 871 { 872 /* 873 * mm_update_next_owner() may clear mm->owner to NULL 874 * if it races with swapoff, page migration, etc. 875 * So this can be called with p == NULL. 876 */ 877 if (unlikely(!p)) 878 return NULL; 879 880 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 881 struct mem_cgroup, css); 882 } 883 884 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 885 { 886 struct mem_cgroup *memcg = NULL; 887 888 if (!mm) 889 return NULL; 890 /* 891 * Because we have no locks, mm->owner's may be being moved to other 892 * cgroup. We use css_tryget() here even if this looks 893 * pessimistic (rather than adding locks here). 894 */ 895 rcu_read_lock(); 896 do { 897 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 898 if (unlikely(!memcg)) 899 break; 900 } while (!css_tryget(&memcg->css)); 901 rcu_read_unlock(); 902 return memcg; 903 } 904 905 /** 906 * mem_cgroup_iter - iterate over memory cgroup hierarchy 907 * @root: hierarchy root 908 * @prev: previously returned memcg, NULL on first invocation 909 * @reclaim: cookie for shared reclaim walks, NULL for full walks 910 * 911 * Returns references to children of the hierarchy below @root, or 912 * @root itself, or %NULL after a full round-trip. 913 * 914 * Caller must pass the return value in @prev on subsequent 915 * invocations for reference counting, or use mem_cgroup_iter_break() 916 * to cancel a hierarchy walk before the round-trip is complete. 917 * 918 * Reclaimers can specify a zone and a priority level in @reclaim to 919 * divide up the memcgs in the hierarchy among all concurrent 920 * reclaimers operating on the same zone and priority. 921 */ 922 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 923 struct mem_cgroup *prev, 924 struct mem_cgroup_reclaim_cookie *reclaim) 925 { 926 struct mem_cgroup *memcg = NULL; 927 int id = 0; 928 929 if (mem_cgroup_disabled()) 930 return NULL; 931 932 if (!root) 933 root = root_mem_cgroup; 934 935 if (prev && !reclaim) 936 id = css_id(&prev->css); 937 938 if (prev && prev != root) 939 css_put(&prev->css); 940 941 if (!root->use_hierarchy && root != root_mem_cgroup) { 942 if (prev) 943 return NULL; 944 return root; 945 } 946 947 while (!memcg) { 948 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 949 struct cgroup_subsys_state *css; 950 951 if (reclaim) { 952 int nid = zone_to_nid(reclaim->zone); 953 int zid = zone_idx(reclaim->zone); 954 struct mem_cgroup_per_zone *mz; 955 956 mz = mem_cgroup_zoneinfo(root, nid, zid); 957 iter = &mz->reclaim_iter[reclaim->priority]; 958 if (prev && reclaim->generation != iter->generation) 959 return NULL; 960 id = iter->position; 961 } 962 963 rcu_read_lock(); 964 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 965 if (css) { 966 if (css == &root->css || css_tryget(css)) 967 memcg = container_of(css, 968 struct mem_cgroup, css); 969 } else 970 id = 0; 971 rcu_read_unlock(); 972 973 if (reclaim) { 974 iter->position = id; 975 if (!css) 976 iter->generation++; 977 else if (!prev && memcg) 978 reclaim->generation = iter->generation; 979 } 980 981 if (prev && !css) 982 return NULL; 983 } 984 return memcg; 985 } 986 987 /** 988 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 989 * @root: hierarchy root 990 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 991 */ 992 void mem_cgroup_iter_break(struct mem_cgroup *root, 993 struct mem_cgroup *prev) 994 { 995 if (!root) 996 root = root_mem_cgroup; 997 if (prev && prev != root) 998 css_put(&prev->css); 999 } 1000 1001 /* 1002 * Iteration constructs for visiting all cgroups (under a tree). If 1003 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1004 * be used for reference counting. 1005 */ 1006 #define for_each_mem_cgroup_tree(iter, root) \ 1007 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1008 iter != NULL; \ 1009 iter = mem_cgroup_iter(root, iter, NULL)) 1010 1011 #define for_each_mem_cgroup(iter) \ 1012 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1013 iter != NULL; \ 1014 iter = mem_cgroup_iter(NULL, iter, NULL)) 1015 1016 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1017 { 1018 return (memcg == root_mem_cgroup); 1019 } 1020 1021 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1022 { 1023 struct mem_cgroup *memcg; 1024 1025 if (!mm) 1026 return; 1027 1028 rcu_read_lock(); 1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1030 if (unlikely(!memcg)) 1031 goto out; 1032 1033 switch (idx) { 1034 case PGFAULT: 1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1036 break; 1037 case PGMAJFAULT: 1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1039 break; 1040 default: 1041 BUG(); 1042 } 1043 out: 1044 rcu_read_unlock(); 1045 } 1046 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1047 1048 /** 1049 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1050 * @zone: zone of the wanted lruvec 1051 * @memcg: memcg of the wanted lruvec 1052 * 1053 * Returns the lru list vector holding pages for the given @zone and 1054 * @mem. This can be the global zone lruvec, if the memory controller 1055 * is disabled. 1056 */ 1057 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1058 struct mem_cgroup *memcg) 1059 { 1060 struct mem_cgroup_per_zone *mz; 1061 1062 if (mem_cgroup_disabled()) 1063 return &zone->lruvec; 1064 1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1066 return &mz->lruvec; 1067 } 1068 1069 /* 1070 * Following LRU functions are allowed to be used without PCG_LOCK. 1071 * Operations are called by routine of global LRU independently from memcg. 1072 * What we have to take care of here is validness of pc->mem_cgroup. 1073 * 1074 * Changes to pc->mem_cgroup happens when 1075 * 1. charge 1076 * 2. moving account 1077 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1078 * It is added to LRU before charge. 1079 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1080 * When moving account, the page is not on LRU. It's isolated. 1081 */ 1082 1083 /** 1084 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1085 * @page: the page 1086 * @zone: zone of the page 1087 */ 1088 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1089 { 1090 struct mem_cgroup_per_zone *mz; 1091 struct mem_cgroup *memcg; 1092 struct page_cgroup *pc; 1093 1094 if (mem_cgroup_disabled()) 1095 return &zone->lruvec; 1096 1097 pc = lookup_page_cgroup(page); 1098 memcg = pc->mem_cgroup; 1099 1100 /* 1101 * Surreptitiously switch any uncharged offlist page to root: 1102 * an uncharged page off lru does nothing to secure 1103 * its former mem_cgroup from sudden removal. 1104 * 1105 * Our caller holds lru_lock, and PageCgroupUsed is updated 1106 * under page_cgroup lock: between them, they make all uses 1107 * of pc->mem_cgroup safe. 1108 */ 1109 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1110 pc->mem_cgroup = memcg = root_mem_cgroup; 1111 1112 mz = page_cgroup_zoneinfo(memcg, page); 1113 return &mz->lruvec; 1114 } 1115 1116 /** 1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1118 * @lruvec: mem_cgroup per zone lru vector 1119 * @lru: index of lru list the page is sitting on 1120 * @nr_pages: positive when adding or negative when removing 1121 * 1122 * This function must be called when a page is added to or removed from an 1123 * lru list. 1124 */ 1125 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1126 int nr_pages) 1127 { 1128 struct mem_cgroup_per_zone *mz; 1129 unsigned long *lru_size; 1130 1131 if (mem_cgroup_disabled()) 1132 return; 1133 1134 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1135 lru_size = mz->lru_size + lru; 1136 *lru_size += nr_pages; 1137 VM_BUG_ON((long)(*lru_size) < 0); 1138 } 1139 1140 /* 1141 * Checks whether given mem is same or in the root_mem_cgroup's 1142 * hierarchy subtree 1143 */ 1144 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1145 struct mem_cgroup *memcg) 1146 { 1147 if (root_memcg == memcg) 1148 return true; 1149 if (!root_memcg->use_hierarchy || !memcg) 1150 return false; 1151 return css_is_ancestor(&memcg->css, &root_memcg->css); 1152 } 1153 1154 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1155 struct mem_cgroup *memcg) 1156 { 1157 bool ret; 1158 1159 rcu_read_lock(); 1160 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1161 rcu_read_unlock(); 1162 return ret; 1163 } 1164 1165 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1166 { 1167 int ret; 1168 struct mem_cgroup *curr = NULL; 1169 struct task_struct *p; 1170 1171 p = find_lock_task_mm(task); 1172 if (p) { 1173 curr = try_get_mem_cgroup_from_mm(p->mm); 1174 task_unlock(p); 1175 } else { 1176 /* 1177 * All threads may have already detached their mm's, but the oom 1178 * killer still needs to detect if they have already been oom 1179 * killed to prevent needlessly killing additional tasks. 1180 */ 1181 task_lock(task); 1182 curr = mem_cgroup_from_task(task); 1183 if (curr) 1184 css_get(&curr->css); 1185 task_unlock(task); 1186 } 1187 if (!curr) 1188 return 0; 1189 /* 1190 * We should check use_hierarchy of "memcg" not "curr". Because checking 1191 * use_hierarchy of "curr" here make this function true if hierarchy is 1192 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1193 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1194 */ 1195 ret = mem_cgroup_same_or_subtree(memcg, curr); 1196 css_put(&curr->css); 1197 return ret; 1198 } 1199 1200 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1201 { 1202 unsigned long inactive_ratio; 1203 unsigned long inactive; 1204 unsigned long active; 1205 unsigned long gb; 1206 1207 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1208 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1209 1210 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1211 if (gb) 1212 inactive_ratio = int_sqrt(10 * gb); 1213 else 1214 inactive_ratio = 1; 1215 1216 return inactive * inactive_ratio < active; 1217 } 1218 1219 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1220 { 1221 unsigned long active; 1222 unsigned long inactive; 1223 1224 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1225 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1226 1227 return (active > inactive); 1228 } 1229 1230 #define mem_cgroup_from_res_counter(counter, member) \ 1231 container_of(counter, struct mem_cgroup, member) 1232 1233 /** 1234 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1235 * @memcg: the memory cgroup 1236 * 1237 * Returns the maximum amount of memory @mem can be charged with, in 1238 * pages. 1239 */ 1240 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1241 { 1242 unsigned long long margin; 1243 1244 margin = res_counter_margin(&memcg->res); 1245 if (do_swap_account) 1246 margin = min(margin, res_counter_margin(&memcg->memsw)); 1247 return margin >> PAGE_SHIFT; 1248 } 1249 1250 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1251 { 1252 struct cgroup *cgrp = memcg->css.cgroup; 1253 1254 /* root ? */ 1255 if (cgrp->parent == NULL) 1256 return vm_swappiness; 1257 1258 return memcg->swappiness; 1259 } 1260 1261 /* 1262 * memcg->moving_account is used for checking possibility that some thread is 1263 * calling move_account(). When a thread on CPU-A starts moving pages under 1264 * a memcg, other threads should check memcg->moving_account under 1265 * rcu_read_lock(), like this: 1266 * 1267 * CPU-A CPU-B 1268 * rcu_read_lock() 1269 * memcg->moving_account+1 if (memcg->mocing_account) 1270 * take heavy locks. 1271 * synchronize_rcu() update something. 1272 * rcu_read_unlock() 1273 * start move here. 1274 */ 1275 1276 /* for quick checking without looking up memcg */ 1277 atomic_t memcg_moving __read_mostly; 1278 1279 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1280 { 1281 atomic_inc(&memcg_moving); 1282 atomic_inc(&memcg->moving_account); 1283 synchronize_rcu(); 1284 } 1285 1286 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1287 { 1288 /* 1289 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1290 * We check NULL in callee rather than caller. 1291 */ 1292 if (memcg) { 1293 atomic_dec(&memcg_moving); 1294 atomic_dec(&memcg->moving_account); 1295 } 1296 } 1297 1298 /* 1299 * 2 routines for checking "mem" is under move_account() or not. 1300 * 1301 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1302 * is used for avoiding races in accounting. If true, 1303 * pc->mem_cgroup may be overwritten. 1304 * 1305 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1306 * under hierarchy of moving cgroups. This is for 1307 * waiting at hith-memory prressure caused by "move". 1308 */ 1309 1310 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1311 { 1312 VM_BUG_ON(!rcu_read_lock_held()); 1313 return atomic_read(&memcg->moving_account) > 0; 1314 } 1315 1316 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1317 { 1318 struct mem_cgroup *from; 1319 struct mem_cgroup *to; 1320 bool ret = false; 1321 /* 1322 * Unlike task_move routines, we access mc.to, mc.from not under 1323 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1324 */ 1325 spin_lock(&mc.lock); 1326 from = mc.from; 1327 to = mc.to; 1328 if (!from) 1329 goto unlock; 1330 1331 ret = mem_cgroup_same_or_subtree(memcg, from) 1332 || mem_cgroup_same_or_subtree(memcg, to); 1333 unlock: 1334 spin_unlock(&mc.lock); 1335 return ret; 1336 } 1337 1338 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1339 { 1340 if (mc.moving_task && current != mc.moving_task) { 1341 if (mem_cgroup_under_move(memcg)) { 1342 DEFINE_WAIT(wait); 1343 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1344 /* moving charge context might have finished. */ 1345 if (mc.moving_task) 1346 schedule(); 1347 finish_wait(&mc.waitq, &wait); 1348 return true; 1349 } 1350 } 1351 return false; 1352 } 1353 1354 /* 1355 * Take this lock when 1356 * - a code tries to modify page's memcg while it's USED. 1357 * - a code tries to modify page state accounting in a memcg. 1358 * see mem_cgroup_stolen(), too. 1359 */ 1360 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1361 unsigned long *flags) 1362 { 1363 spin_lock_irqsave(&memcg->move_lock, *flags); 1364 } 1365 1366 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1367 unsigned long *flags) 1368 { 1369 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1370 } 1371 1372 /** 1373 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1374 * @memcg: The memory cgroup that went over limit 1375 * @p: Task that is going to be killed 1376 * 1377 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1378 * enabled 1379 */ 1380 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1381 { 1382 struct cgroup *task_cgrp; 1383 struct cgroup *mem_cgrp; 1384 /* 1385 * Need a buffer in BSS, can't rely on allocations. The code relies 1386 * on the assumption that OOM is serialized for memory controller. 1387 * If this assumption is broken, revisit this code. 1388 */ 1389 static char memcg_name[PATH_MAX]; 1390 int ret; 1391 1392 if (!memcg || !p) 1393 return; 1394 1395 rcu_read_lock(); 1396 1397 mem_cgrp = memcg->css.cgroup; 1398 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1399 1400 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1401 if (ret < 0) { 1402 /* 1403 * Unfortunately, we are unable to convert to a useful name 1404 * But we'll still print out the usage information 1405 */ 1406 rcu_read_unlock(); 1407 goto done; 1408 } 1409 rcu_read_unlock(); 1410 1411 printk(KERN_INFO "Task in %s killed", memcg_name); 1412 1413 rcu_read_lock(); 1414 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1415 if (ret < 0) { 1416 rcu_read_unlock(); 1417 goto done; 1418 } 1419 rcu_read_unlock(); 1420 1421 /* 1422 * Continues from above, so we don't need an KERN_ level 1423 */ 1424 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1425 done: 1426 1427 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1428 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1429 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1430 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1431 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1432 "failcnt %llu\n", 1433 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1434 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1435 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1436 } 1437 1438 /* 1439 * This function returns the number of memcg under hierarchy tree. Returns 1440 * 1(self count) if no children. 1441 */ 1442 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1443 { 1444 int num = 0; 1445 struct mem_cgroup *iter; 1446 1447 for_each_mem_cgroup_tree(iter, memcg) 1448 num++; 1449 return num; 1450 } 1451 1452 /* 1453 * Return the memory (and swap, if configured) limit for a memcg. 1454 */ 1455 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1456 { 1457 u64 limit; 1458 u64 memsw; 1459 1460 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1461 limit += total_swap_pages << PAGE_SHIFT; 1462 1463 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1464 /* 1465 * If memsw is finite and limits the amount of swap space available 1466 * to this memcg, return that limit. 1467 */ 1468 return min(limit, memsw); 1469 } 1470 1471 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1472 int order) 1473 { 1474 struct mem_cgroup *iter; 1475 unsigned long chosen_points = 0; 1476 unsigned long totalpages; 1477 unsigned int points = 0; 1478 struct task_struct *chosen = NULL; 1479 1480 /* 1481 * If current has a pending SIGKILL, then automatically select it. The 1482 * goal is to allow it to allocate so that it may quickly exit and free 1483 * its memory. 1484 */ 1485 if (fatal_signal_pending(current)) { 1486 set_thread_flag(TIF_MEMDIE); 1487 return; 1488 } 1489 1490 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1491 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1492 for_each_mem_cgroup_tree(iter, memcg) { 1493 struct cgroup *cgroup = iter->css.cgroup; 1494 struct cgroup_iter it; 1495 struct task_struct *task; 1496 1497 cgroup_iter_start(cgroup, &it); 1498 while ((task = cgroup_iter_next(cgroup, &it))) { 1499 switch (oom_scan_process_thread(task, totalpages, NULL, 1500 false)) { 1501 case OOM_SCAN_SELECT: 1502 if (chosen) 1503 put_task_struct(chosen); 1504 chosen = task; 1505 chosen_points = ULONG_MAX; 1506 get_task_struct(chosen); 1507 /* fall through */ 1508 case OOM_SCAN_CONTINUE: 1509 continue; 1510 case OOM_SCAN_ABORT: 1511 cgroup_iter_end(cgroup, &it); 1512 mem_cgroup_iter_break(memcg, iter); 1513 if (chosen) 1514 put_task_struct(chosen); 1515 return; 1516 case OOM_SCAN_OK: 1517 break; 1518 }; 1519 points = oom_badness(task, memcg, NULL, totalpages); 1520 if (points > chosen_points) { 1521 if (chosen) 1522 put_task_struct(chosen); 1523 chosen = task; 1524 chosen_points = points; 1525 get_task_struct(chosen); 1526 } 1527 } 1528 cgroup_iter_end(cgroup, &it); 1529 } 1530 1531 if (!chosen) 1532 return; 1533 points = chosen_points * 1000 / totalpages; 1534 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1535 NULL, "Memory cgroup out of memory"); 1536 } 1537 1538 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1539 gfp_t gfp_mask, 1540 unsigned long flags) 1541 { 1542 unsigned long total = 0; 1543 bool noswap = false; 1544 int loop; 1545 1546 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1547 noswap = true; 1548 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1549 noswap = true; 1550 1551 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1552 if (loop) 1553 drain_all_stock_async(memcg); 1554 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1555 /* 1556 * Allow limit shrinkers, which are triggered directly 1557 * by userspace, to catch signals and stop reclaim 1558 * after minimal progress, regardless of the margin. 1559 */ 1560 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1561 break; 1562 if (mem_cgroup_margin(memcg)) 1563 break; 1564 /* 1565 * If nothing was reclaimed after two attempts, there 1566 * may be no reclaimable pages in this hierarchy. 1567 */ 1568 if (loop && !total) 1569 break; 1570 } 1571 return total; 1572 } 1573 1574 /** 1575 * test_mem_cgroup_node_reclaimable 1576 * @memcg: the target memcg 1577 * @nid: the node ID to be checked. 1578 * @noswap : specify true here if the user wants flle only information. 1579 * 1580 * This function returns whether the specified memcg contains any 1581 * reclaimable pages on a node. Returns true if there are any reclaimable 1582 * pages in the node. 1583 */ 1584 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1585 int nid, bool noswap) 1586 { 1587 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1588 return true; 1589 if (noswap || !total_swap_pages) 1590 return false; 1591 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1592 return true; 1593 return false; 1594 1595 } 1596 #if MAX_NUMNODES > 1 1597 1598 /* 1599 * Always updating the nodemask is not very good - even if we have an empty 1600 * list or the wrong list here, we can start from some node and traverse all 1601 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1602 * 1603 */ 1604 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1605 { 1606 int nid; 1607 /* 1608 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1609 * pagein/pageout changes since the last update. 1610 */ 1611 if (!atomic_read(&memcg->numainfo_events)) 1612 return; 1613 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1614 return; 1615 1616 /* make a nodemask where this memcg uses memory from */ 1617 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1618 1619 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1620 1621 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1622 node_clear(nid, memcg->scan_nodes); 1623 } 1624 1625 atomic_set(&memcg->numainfo_events, 0); 1626 atomic_set(&memcg->numainfo_updating, 0); 1627 } 1628 1629 /* 1630 * Selecting a node where we start reclaim from. Because what we need is just 1631 * reducing usage counter, start from anywhere is O,K. Considering 1632 * memory reclaim from current node, there are pros. and cons. 1633 * 1634 * Freeing memory from current node means freeing memory from a node which 1635 * we'll use or we've used. So, it may make LRU bad. And if several threads 1636 * hit limits, it will see a contention on a node. But freeing from remote 1637 * node means more costs for memory reclaim because of memory latency. 1638 * 1639 * Now, we use round-robin. Better algorithm is welcomed. 1640 */ 1641 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1642 { 1643 int node; 1644 1645 mem_cgroup_may_update_nodemask(memcg); 1646 node = memcg->last_scanned_node; 1647 1648 node = next_node(node, memcg->scan_nodes); 1649 if (node == MAX_NUMNODES) 1650 node = first_node(memcg->scan_nodes); 1651 /* 1652 * We call this when we hit limit, not when pages are added to LRU. 1653 * No LRU may hold pages because all pages are UNEVICTABLE or 1654 * memcg is too small and all pages are not on LRU. In that case, 1655 * we use curret node. 1656 */ 1657 if (unlikely(node == MAX_NUMNODES)) 1658 node = numa_node_id(); 1659 1660 memcg->last_scanned_node = node; 1661 return node; 1662 } 1663 1664 /* 1665 * Check all nodes whether it contains reclaimable pages or not. 1666 * For quick scan, we make use of scan_nodes. This will allow us to skip 1667 * unused nodes. But scan_nodes is lazily updated and may not cotain 1668 * enough new information. We need to do double check. 1669 */ 1670 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1671 { 1672 int nid; 1673 1674 /* 1675 * quick check...making use of scan_node. 1676 * We can skip unused nodes. 1677 */ 1678 if (!nodes_empty(memcg->scan_nodes)) { 1679 for (nid = first_node(memcg->scan_nodes); 1680 nid < MAX_NUMNODES; 1681 nid = next_node(nid, memcg->scan_nodes)) { 1682 1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1684 return true; 1685 } 1686 } 1687 /* 1688 * Check rest of nodes. 1689 */ 1690 for_each_node_state(nid, N_HIGH_MEMORY) { 1691 if (node_isset(nid, memcg->scan_nodes)) 1692 continue; 1693 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1694 return true; 1695 } 1696 return false; 1697 } 1698 1699 #else 1700 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1701 { 1702 return 0; 1703 } 1704 1705 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1706 { 1707 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1708 } 1709 #endif 1710 1711 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1712 struct zone *zone, 1713 gfp_t gfp_mask, 1714 unsigned long *total_scanned) 1715 { 1716 struct mem_cgroup *victim = NULL; 1717 int total = 0; 1718 int loop = 0; 1719 unsigned long excess; 1720 unsigned long nr_scanned; 1721 struct mem_cgroup_reclaim_cookie reclaim = { 1722 .zone = zone, 1723 .priority = 0, 1724 }; 1725 1726 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1727 1728 while (1) { 1729 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1730 if (!victim) { 1731 loop++; 1732 if (loop >= 2) { 1733 /* 1734 * If we have not been able to reclaim 1735 * anything, it might because there are 1736 * no reclaimable pages under this hierarchy 1737 */ 1738 if (!total) 1739 break; 1740 /* 1741 * We want to do more targeted reclaim. 1742 * excess >> 2 is not to excessive so as to 1743 * reclaim too much, nor too less that we keep 1744 * coming back to reclaim from this cgroup 1745 */ 1746 if (total >= (excess >> 2) || 1747 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1748 break; 1749 } 1750 continue; 1751 } 1752 if (!mem_cgroup_reclaimable(victim, false)) 1753 continue; 1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1755 zone, &nr_scanned); 1756 *total_scanned += nr_scanned; 1757 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1758 break; 1759 } 1760 mem_cgroup_iter_break(root_memcg, victim); 1761 return total; 1762 } 1763 1764 /* 1765 * Check OOM-Killer is already running under our hierarchy. 1766 * If someone is running, return false. 1767 * Has to be called with memcg_oom_lock 1768 */ 1769 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1770 { 1771 struct mem_cgroup *iter, *failed = NULL; 1772 1773 for_each_mem_cgroup_tree(iter, memcg) { 1774 if (iter->oom_lock) { 1775 /* 1776 * this subtree of our hierarchy is already locked 1777 * so we cannot give a lock. 1778 */ 1779 failed = iter; 1780 mem_cgroup_iter_break(memcg, iter); 1781 break; 1782 } else 1783 iter->oom_lock = true; 1784 } 1785 1786 if (!failed) 1787 return true; 1788 1789 /* 1790 * OK, we failed to lock the whole subtree so we have to clean up 1791 * what we set up to the failing subtree 1792 */ 1793 for_each_mem_cgroup_tree(iter, memcg) { 1794 if (iter == failed) { 1795 mem_cgroup_iter_break(memcg, iter); 1796 break; 1797 } 1798 iter->oom_lock = false; 1799 } 1800 return false; 1801 } 1802 1803 /* 1804 * Has to be called with memcg_oom_lock 1805 */ 1806 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1807 { 1808 struct mem_cgroup *iter; 1809 1810 for_each_mem_cgroup_tree(iter, memcg) 1811 iter->oom_lock = false; 1812 return 0; 1813 } 1814 1815 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1816 { 1817 struct mem_cgroup *iter; 1818 1819 for_each_mem_cgroup_tree(iter, memcg) 1820 atomic_inc(&iter->under_oom); 1821 } 1822 1823 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1824 { 1825 struct mem_cgroup *iter; 1826 1827 /* 1828 * When a new child is created while the hierarchy is under oom, 1829 * mem_cgroup_oom_lock() may not be called. We have to use 1830 * atomic_add_unless() here. 1831 */ 1832 for_each_mem_cgroup_tree(iter, memcg) 1833 atomic_add_unless(&iter->under_oom, -1, 0); 1834 } 1835 1836 static DEFINE_SPINLOCK(memcg_oom_lock); 1837 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1838 1839 struct oom_wait_info { 1840 struct mem_cgroup *memcg; 1841 wait_queue_t wait; 1842 }; 1843 1844 static int memcg_oom_wake_function(wait_queue_t *wait, 1845 unsigned mode, int sync, void *arg) 1846 { 1847 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1848 struct mem_cgroup *oom_wait_memcg; 1849 struct oom_wait_info *oom_wait_info; 1850 1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1852 oom_wait_memcg = oom_wait_info->memcg; 1853 1854 /* 1855 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1856 * Then we can use css_is_ancestor without taking care of RCU. 1857 */ 1858 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1859 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1860 return 0; 1861 return autoremove_wake_function(wait, mode, sync, arg); 1862 } 1863 1864 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1865 { 1866 /* for filtering, pass "memcg" as argument. */ 1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1868 } 1869 1870 static void memcg_oom_recover(struct mem_cgroup *memcg) 1871 { 1872 if (memcg && atomic_read(&memcg->under_oom)) 1873 memcg_wakeup_oom(memcg); 1874 } 1875 1876 /* 1877 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1878 */ 1879 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1880 int order) 1881 { 1882 struct oom_wait_info owait; 1883 bool locked, need_to_kill; 1884 1885 owait.memcg = memcg; 1886 owait.wait.flags = 0; 1887 owait.wait.func = memcg_oom_wake_function; 1888 owait.wait.private = current; 1889 INIT_LIST_HEAD(&owait.wait.task_list); 1890 need_to_kill = true; 1891 mem_cgroup_mark_under_oom(memcg); 1892 1893 /* At first, try to OOM lock hierarchy under memcg.*/ 1894 spin_lock(&memcg_oom_lock); 1895 locked = mem_cgroup_oom_lock(memcg); 1896 /* 1897 * Even if signal_pending(), we can't quit charge() loop without 1898 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1899 * under OOM is always welcomed, use TASK_KILLABLE here. 1900 */ 1901 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1902 if (!locked || memcg->oom_kill_disable) 1903 need_to_kill = false; 1904 if (locked) 1905 mem_cgroup_oom_notify(memcg); 1906 spin_unlock(&memcg_oom_lock); 1907 1908 if (need_to_kill) { 1909 finish_wait(&memcg_oom_waitq, &owait.wait); 1910 mem_cgroup_out_of_memory(memcg, mask, order); 1911 } else { 1912 schedule(); 1913 finish_wait(&memcg_oom_waitq, &owait.wait); 1914 } 1915 spin_lock(&memcg_oom_lock); 1916 if (locked) 1917 mem_cgroup_oom_unlock(memcg); 1918 memcg_wakeup_oom(memcg); 1919 spin_unlock(&memcg_oom_lock); 1920 1921 mem_cgroup_unmark_under_oom(memcg); 1922 1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1924 return false; 1925 /* Give chance to dying process */ 1926 schedule_timeout_uninterruptible(1); 1927 return true; 1928 } 1929 1930 /* 1931 * Currently used to update mapped file statistics, but the routine can be 1932 * generalized to update other statistics as well. 1933 * 1934 * Notes: Race condition 1935 * 1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1937 * it tends to be costly. But considering some conditions, we doesn't need 1938 * to do so _always_. 1939 * 1940 * Considering "charge", lock_page_cgroup() is not required because all 1941 * file-stat operations happen after a page is attached to radix-tree. There 1942 * are no race with "charge". 1943 * 1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1946 * if there are race with "uncharge". Statistics itself is properly handled 1947 * by flags. 1948 * 1949 * Considering "move", this is an only case we see a race. To make the race 1950 * small, we check mm->moving_account and detect there are possibility of race 1951 * If there is, we take a lock. 1952 */ 1953 1954 void __mem_cgroup_begin_update_page_stat(struct page *page, 1955 bool *locked, unsigned long *flags) 1956 { 1957 struct mem_cgroup *memcg; 1958 struct page_cgroup *pc; 1959 1960 pc = lookup_page_cgroup(page); 1961 again: 1962 memcg = pc->mem_cgroup; 1963 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1964 return; 1965 /* 1966 * If this memory cgroup is not under account moving, we don't 1967 * need to take move_lock_mem_cgroup(). Because we already hold 1968 * rcu_read_lock(), any calls to move_account will be delayed until 1969 * rcu_read_unlock() if mem_cgroup_stolen() == true. 1970 */ 1971 if (!mem_cgroup_stolen(memcg)) 1972 return; 1973 1974 move_lock_mem_cgroup(memcg, flags); 1975 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 1976 move_unlock_mem_cgroup(memcg, flags); 1977 goto again; 1978 } 1979 *locked = true; 1980 } 1981 1982 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 1983 { 1984 struct page_cgroup *pc = lookup_page_cgroup(page); 1985 1986 /* 1987 * It's guaranteed that pc->mem_cgroup never changes while 1988 * lock is held because a routine modifies pc->mem_cgroup 1989 * should take move_lock_mem_cgroup(). 1990 */ 1991 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 1992 } 1993 1994 void mem_cgroup_update_page_stat(struct page *page, 1995 enum mem_cgroup_page_stat_item idx, int val) 1996 { 1997 struct mem_cgroup *memcg; 1998 struct page_cgroup *pc = lookup_page_cgroup(page); 1999 unsigned long uninitialized_var(flags); 2000 2001 if (mem_cgroup_disabled()) 2002 return; 2003 2004 memcg = pc->mem_cgroup; 2005 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2006 return; 2007 2008 switch (idx) { 2009 case MEMCG_NR_FILE_MAPPED: 2010 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2011 break; 2012 default: 2013 BUG(); 2014 } 2015 2016 this_cpu_add(memcg->stat->count[idx], val); 2017 } 2018 2019 /* 2020 * size of first charge trial. "32" comes from vmscan.c's magic value. 2021 * TODO: maybe necessary to use big numbers in big irons. 2022 */ 2023 #define CHARGE_BATCH 32U 2024 struct memcg_stock_pcp { 2025 struct mem_cgroup *cached; /* this never be root cgroup */ 2026 unsigned int nr_pages; 2027 struct work_struct work; 2028 unsigned long flags; 2029 #define FLUSHING_CACHED_CHARGE 0 2030 }; 2031 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2032 static DEFINE_MUTEX(percpu_charge_mutex); 2033 2034 /* 2035 * Try to consume stocked charge on this cpu. If success, one page is consumed 2036 * from local stock and true is returned. If the stock is 0 or charges from a 2037 * cgroup which is not current target, returns false. This stock will be 2038 * refilled. 2039 */ 2040 static bool consume_stock(struct mem_cgroup *memcg) 2041 { 2042 struct memcg_stock_pcp *stock; 2043 bool ret = true; 2044 2045 stock = &get_cpu_var(memcg_stock); 2046 if (memcg == stock->cached && stock->nr_pages) 2047 stock->nr_pages--; 2048 else /* need to call res_counter_charge */ 2049 ret = false; 2050 put_cpu_var(memcg_stock); 2051 return ret; 2052 } 2053 2054 /* 2055 * Returns stocks cached in percpu to res_counter and reset cached information. 2056 */ 2057 static void drain_stock(struct memcg_stock_pcp *stock) 2058 { 2059 struct mem_cgroup *old = stock->cached; 2060 2061 if (stock->nr_pages) { 2062 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2063 2064 res_counter_uncharge(&old->res, bytes); 2065 if (do_swap_account) 2066 res_counter_uncharge(&old->memsw, bytes); 2067 stock->nr_pages = 0; 2068 } 2069 stock->cached = NULL; 2070 } 2071 2072 /* 2073 * This must be called under preempt disabled or must be called by 2074 * a thread which is pinned to local cpu. 2075 */ 2076 static void drain_local_stock(struct work_struct *dummy) 2077 { 2078 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2079 drain_stock(stock); 2080 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2081 } 2082 2083 /* 2084 * Cache charges(val) which is from res_counter, to local per_cpu area. 2085 * This will be consumed by consume_stock() function, later. 2086 */ 2087 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2088 { 2089 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2090 2091 if (stock->cached != memcg) { /* reset if necessary */ 2092 drain_stock(stock); 2093 stock->cached = memcg; 2094 } 2095 stock->nr_pages += nr_pages; 2096 put_cpu_var(memcg_stock); 2097 } 2098 2099 /* 2100 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2101 * of the hierarchy under it. sync flag says whether we should block 2102 * until the work is done. 2103 */ 2104 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2105 { 2106 int cpu, curcpu; 2107 2108 /* Notify other cpus that system-wide "drain" is running */ 2109 get_online_cpus(); 2110 curcpu = get_cpu(); 2111 for_each_online_cpu(cpu) { 2112 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2113 struct mem_cgroup *memcg; 2114 2115 memcg = stock->cached; 2116 if (!memcg || !stock->nr_pages) 2117 continue; 2118 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2119 continue; 2120 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2121 if (cpu == curcpu) 2122 drain_local_stock(&stock->work); 2123 else 2124 schedule_work_on(cpu, &stock->work); 2125 } 2126 } 2127 put_cpu(); 2128 2129 if (!sync) 2130 goto out; 2131 2132 for_each_online_cpu(cpu) { 2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2134 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2135 flush_work(&stock->work); 2136 } 2137 out: 2138 put_online_cpus(); 2139 } 2140 2141 /* 2142 * Tries to drain stocked charges in other cpus. This function is asynchronous 2143 * and just put a work per cpu for draining localy on each cpu. Caller can 2144 * expects some charges will be back to res_counter later but cannot wait for 2145 * it. 2146 */ 2147 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2148 { 2149 /* 2150 * If someone calls draining, avoid adding more kworker runs. 2151 */ 2152 if (!mutex_trylock(&percpu_charge_mutex)) 2153 return; 2154 drain_all_stock(root_memcg, false); 2155 mutex_unlock(&percpu_charge_mutex); 2156 } 2157 2158 /* This is a synchronous drain interface. */ 2159 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2160 { 2161 /* called when force_empty is called */ 2162 mutex_lock(&percpu_charge_mutex); 2163 drain_all_stock(root_memcg, true); 2164 mutex_unlock(&percpu_charge_mutex); 2165 } 2166 2167 /* 2168 * This function drains percpu counter value from DEAD cpu and 2169 * move it to local cpu. Note that this function can be preempted. 2170 */ 2171 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2172 { 2173 int i; 2174 2175 spin_lock(&memcg->pcp_counter_lock); 2176 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2177 long x = per_cpu(memcg->stat->count[i], cpu); 2178 2179 per_cpu(memcg->stat->count[i], cpu) = 0; 2180 memcg->nocpu_base.count[i] += x; 2181 } 2182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2183 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2184 2185 per_cpu(memcg->stat->events[i], cpu) = 0; 2186 memcg->nocpu_base.events[i] += x; 2187 } 2188 spin_unlock(&memcg->pcp_counter_lock); 2189 } 2190 2191 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2192 unsigned long action, 2193 void *hcpu) 2194 { 2195 int cpu = (unsigned long)hcpu; 2196 struct memcg_stock_pcp *stock; 2197 struct mem_cgroup *iter; 2198 2199 if (action == CPU_ONLINE) 2200 return NOTIFY_OK; 2201 2202 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2203 return NOTIFY_OK; 2204 2205 for_each_mem_cgroup(iter) 2206 mem_cgroup_drain_pcp_counter(iter, cpu); 2207 2208 stock = &per_cpu(memcg_stock, cpu); 2209 drain_stock(stock); 2210 return NOTIFY_OK; 2211 } 2212 2213 2214 /* See __mem_cgroup_try_charge() for details */ 2215 enum { 2216 CHARGE_OK, /* success */ 2217 CHARGE_RETRY, /* need to retry but retry is not bad */ 2218 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2219 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2220 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2221 }; 2222 2223 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2224 unsigned int nr_pages, bool oom_check) 2225 { 2226 unsigned long csize = nr_pages * PAGE_SIZE; 2227 struct mem_cgroup *mem_over_limit; 2228 struct res_counter *fail_res; 2229 unsigned long flags = 0; 2230 int ret; 2231 2232 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2233 2234 if (likely(!ret)) { 2235 if (!do_swap_account) 2236 return CHARGE_OK; 2237 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2238 if (likely(!ret)) 2239 return CHARGE_OK; 2240 2241 res_counter_uncharge(&memcg->res, csize); 2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2243 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2244 } else 2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2246 /* 2247 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2248 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2249 * 2250 * Never reclaim on behalf of optional batching, retry with a 2251 * single page instead. 2252 */ 2253 if (nr_pages == CHARGE_BATCH) 2254 return CHARGE_RETRY; 2255 2256 if (!(gfp_mask & __GFP_WAIT)) 2257 return CHARGE_WOULDBLOCK; 2258 2259 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2260 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2261 return CHARGE_RETRY; 2262 /* 2263 * Even though the limit is exceeded at this point, reclaim 2264 * may have been able to free some pages. Retry the charge 2265 * before killing the task. 2266 * 2267 * Only for regular pages, though: huge pages are rather 2268 * unlikely to succeed so close to the limit, and we fall back 2269 * to regular pages anyway in case of failure. 2270 */ 2271 if (nr_pages == 1 && ret) 2272 return CHARGE_RETRY; 2273 2274 /* 2275 * At task move, charge accounts can be doubly counted. So, it's 2276 * better to wait until the end of task_move if something is going on. 2277 */ 2278 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2279 return CHARGE_RETRY; 2280 2281 /* If we don't need to call oom-killer at el, return immediately */ 2282 if (!oom_check) 2283 return CHARGE_NOMEM; 2284 /* check OOM */ 2285 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2286 return CHARGE_OOM_DIE; 2287 2288 return CHARGE_RETRY; 2289 } 2290 2291 /* 2292 * __mem_cgroup_try_charge() does 2293 * 1. detect memcg to be charged against from passed *mm and *ptr, 2294 * 2. update res_counter 2295 * 3. call memory reclaim if necessary. 2296 * 2297 * In some special case, if the task is fatal, fatal_signal_pending() or 2298 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2299 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2300 * as possible without any hazards. 2: all pages should have a valid 2301 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2302 * pointer, that is treated as a charge to root_mem_cgroup. 2303 * 2304 * So __mem_cgroup_try_charge() will return 2305 * 0 ... on success, filling *ptr with a valid memcg pointer. 2306 * -ENOMEM ... charge failure because of resource limits. 2307 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2308 * 2309 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2310 * the oom-killer can be invoked. 2311 */ 2312 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2313 gfp_t gfp_mask, 2314 unsigned int nr_pages, 2315 struct mem_cgroup **ptr, 2316 bool oom) 2317 { 2318 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2319 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2320 struct mem_cgroup *memcg = NULL; 2321 int ret; 2322 2323 /* 2324 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2325 * in system level. So, allow to go ahead dying process in addition to 2326 * MEMDIE process. 2327 */ 2328 if (unlikely(test_thread_flag(TIF_MEMDIE) 2329 || fatal_signal_pending(current))) 2330 goto bypass; 2331 2332 /* 2333 * We always charge the cgroup the mm_struct belongs to. 2334 * The mm_struct's mem_cgroup changes on task migration if the 2335 * thread group leader migrates. It's possible that mm is not 2336 * set, if so charge the root memcg (happens for pagecache usage). 2337 */ 2338 if (!*ptr && !mm) 2339 *ptr = root_mem_cgroup; 2340 again: 2341 if (*ptr) { /* css should be a valid one */ 2342 memcg = *ptr; 2343 VM_BUG_ON(css_is_removed(&memcg->css)); 2344 if (mem_cgroup_is_root(memcg)) 2345 goto done; 2346 if (nr_pages == 1 && consume_stock(memcg)) 2347 goto done; 2348 css_get(&memcg->css); 2349 } else { 2350 struct task_struct *p; 2351 2352 rcu_read_lock(); 2353 p = rcu_dereference(mm->owner); 2354 /* 2355 * Because we don't have task_lock(), "p" can exit. 2356 * In that case, "memcg" can point to root or p can be NULL with 2357 * race with swapoff. Then, we have small risk of mis-accouning. 2358 * But such kind of mis-account by race always happens because 2359 * we don't have cgroup_mutex(). It's overkill and we allo that 2360 * small race, here. 2361 * (*) swapoff at el will charge against mm-struct not against 2362 * task-struct. So, mm->owner can be NULL. 2363 */ 2364 memcg = mem_cgroup_from_task(p); 2365 if (!memcg) 2366 memcg = root_mem_cgroup; 2367 if (mem_cgroup_is_root(memcg)) { 2368 rcu_read_unlock(); 2369 goto done; 2370 } 2371 if (nr_pages == 1 && consume_stock(memcg)) { 2372 /* 2373 * It seems dagerous to access memcg without css_get(). 2374 * But considering how consume_stok works, it's not 2375 * necessary. If consume_stock success, some charges 2376 * from this memcg are cached on this cpu. So, we 2377 * don't need to call css_get()/css_tryget() before 2378 * calling consume_stock(). 2379 */ 2380 rcu_read_unlock(); 2381 goto done; 2382 } 2383 /* after here, we may be blocked. we need to get refcnt */ 2384 if (!css_tryget(&memcg->css)) { 2385 rcu_read_unlock(); 2386 goto again; 2387 } 2388 rcu_read_unlock(); 2389 } 2390 2391 do { 2392 bool oom_check; 2393 2394 /* If killed, bypass charge */ 2395 if (fatal_signal_pending(current)) { 2396 css_put(&memcg->css); 2397 goto bypass; 2398 } 2399 2400 oom_check = false; 2401 if (oom && !nr_oom_retries) { 2402 oom_check = true; 2403 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2404 } 2405 2406 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2407 switch (ret) { 2408 case CHARGE_OK: 2409 break; 2410 case CHARGE_RETRY: /* not in OOM situation but retry */ 2411 batch = nr_pages; 2412 css_put(&memcg->css); 2413 memcg = NULL; 2414 goto again; 2415 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2416 css_put(&memcg->css); 2417 goto nomem; 2418 case CHARGE_NOMEM: /* OOM routine works */ 2419 if (!oom) { 2420 css_put(&memcg->css); 2421 goto nomem; 2422 } 2423 /* If oom, we never return -ENOMEM */ 2424 nr_oom_retries--; 2425 break; 2426 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2427 css_put(&memcg->css); 2428 goto bypass; 2429 } 2430 } while (ret != CHARGE_OK); 2431 2432 if (batch > nr_pages) 2433 refill_stock(memcg, batch - nr_pages); 2434 css_put(&memcg->css); 2435 done: 2436 *ptr = memcg; 2437 return 0; 2438 nomem: 2439 *ptr = NULL; 2440 return -ENOMEM; 2441 bypass: 2442 *ptr = root_mem_cgroup; 2443 return -EINTR; 2444 } 2445 2446 /* 2447 * Somemtimes we have to undo a charge we got by try_charge(). 2448 * This function is for that and do uncharge, put css's refcnt. 2449 * gotten by try_charge(). 2450 */ 2451 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2452 unsigned int nr_pages) 2453 { 2454 if (!mem_cgroup_is_root(memcg)) { 2455 unsigned long bytes = nr_pages * PAGE_SIZE; 2456 2457 res_counter_uncharge(&memcg->res, bytes); 2458 if (do_swap_account) 2459 res_counter_uncharge(&memcg->memsw, bytes); 2460 } 2461 } 2462 2463 /* 2464 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2465 * This is useful when moving usage to parent cgroup. 2466 */ 2467 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2468 unsigned int nr_pages) 2469 { 2470 unsigned long bytes = nr_pages * PAGE_SIZE; 2471 2472 if (mem_cgroup_is_root(memcg)) 2473 return; 2474 2475 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2476 if (do_swap_account) 2477 res_counter_uncharge_until(&memcg->memsw, 2478 memcg->memsw.parent, bytes); 2479 } 2480 2481 /* 2482 * A helper function to get mem_cgroup from ID. must be called under 2483 * rcu_read_lock(). The caller must check css_is_removed() or some if 2484 * it's concern. (dropping refcnt from swap can be called against removed 2485 * memcg.) 2486 */ 2487 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2488 { 2489 struct cgroup_subsys_state *css; 2490 2491 /* ID 0 is unused ID */ 2492 if (!id) 2493 return NULL; 2494 css = css_lookup(&mem_cgroup_subsys, id); 2495 if (!css) 2496 return NULL; 2497 return container_of(css, struct mem_cgroup, css); 2498 } 2499 2500 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2501 { 2502 struct mem_cgroup *memcg = NULL; 2503 struct page_cgroup *pc; 2504 unsigned short id; 2505 swp_entry_t ent; 2506 2507 VM_BUG_ON(!PageLocked(page)); 2508 2509 pc = lookup_page_cgroup(page); 2510 lock_page_cgroup(pc); 2511 if (PageCgroupUsed(pc)) { 2512 memcg = pc->mem_cgroup; 2513 if (memcg && !css_tryget(&memcg->css)) 2514 memcg = NULL; 2515 } else if (PageSwapCache(page)) { 2516 ent.val = page_private(page); 2517 id = lookup_swap_cgroup_id(ent); 2518 rcu_read_lock(); 2519 memcg = mem_cgroup_lookup(id); 2520 if (memcg && !css_tryget(&memcg->css)) 2521 memcg = NULL; 2522 rcu_read_unlock(); 2523 } 2524 unlock_page_cgroup(pc); 2525 return memcg; 2526 } 2527 2528 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2529 struct page *page, 2530 unsigned int nr_pages, 2531 enum charge_type ctype, 2532 bool lrucare) 2533 { 2534 struct page_cgroup *pc = lookup_page_cgroup(page); 2535 struct zone *uninitialized_var(zone); 2536 struct lruvec *lruvec; 2537 bool was_on_lru = false; 2538 bool anon; 2539 2540 lock_page_cgroup(pc); 2541 VM_BUG_ON(PageCgroupUsed(pc)); 2542 /* 2543 * we don't need page_cgroup_lock about tail pages, becase they are not 2544 * accessed by any other context at this point. 2545 */ 2546 2547 /* 2548 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2549 * may already be on some other mem_cgroup's LRU. Take care of it. 2550 */ 2551 if (lrucare) { 2552 zone = page_zone(page); 2553 spin_lock_irq(&zone->lru_lock); 2554 if (PageLRU(page)) { 2555 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2556 ClearPageLRU(page); 2557 del_page_from_lru_list(page, lruvec, page_lru(page)); 2558 was_on_lru = true; 2559 } 2560 } 2561 2562 pc->mem_cgroup = memcg; 2563 /* 2564 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2565 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2566 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2567 * before USED bit, we need memory barrier here. 2568 * See mem_cgroup_add_lru_list(), etc. 2569 */ 2570 smp_wmb(); 2571 SetPageCgroupUsed(pc); 2572 2573 if (lrucare) { 2574 if (was_on_lru) { 2575 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2576 VM_BUG_ON(PageLRU(page)); 2577 SetPageLRU(page); 2578 add_page_to_lru_list(page, lruvec, page_lru(page)); 2579 } 2580 spin_unlock_irq(&zone->lru_lock); 2581 } 2582 2583 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2584 anon = true; 2585 else 2586 anon = false; 2587 2588 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2589 unlock_page_cgroup(pc); 2590 2591 /* 2592 * "charge_statistics" updated event counter. Then, check it. 2593 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2594 * if they exceeds softlimit. 2595 */ 2596 memcg_check_events(memcg, page); 2597 } 2598 2599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2600 2601 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2602 /* 2603 * Because tail pages are not marked as "used", set it. We're under 2604 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2605 * charge/uncharge will be never happen and move_account() is done under 2606 * compound_lock(), so we don't have to take care of races. 2607 */ 2608 void mem_cgroup_split_huge_fixup(struct page *head) 2609 { 2610 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2611 struct page_cgroup *pc; 2612 int i; 2613 2614 if (mem_cgroup_disabled()) 2615 return; 2616 for (i = 1; i < HPAGE_PMD_NR; i++) { 2617 pc = head_pc + i; 2618 pc->mem_cgroup = head_pc->mem_cgroup; 2619 smp_wmb();/* see __commit_charge() */ 2620 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2621 } 2622 } 2623 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2624 2625 /** 2626 * mem_cgroup_move_account - move account of the page 2627 * @page: the page 2628 * @nr_pages: number of regular pages (>1 for huge pages) 2629 * @pc: page_cgroup of the page. 2630 * @from: mem_cgroup which the page is moved from. 2631 * @to: mem_cgroup which the page is moved to. @from != @to. 2632 * 2633 * The caller must confirm following. 2634 * - page is not on LRU (isolate_page() is useful.) 2635 * - compound_lock is held when nr_pages > 1 2636 * 2637 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2638 * from old cgroup. 2639 */ 2640 static int mem_cgroup_move_account(struct page *page, 2641 unsigned int nr_pages, 2642 struct page_cgroup *pc, 2643 struct mem_cgroup *from, 2644 struct mem_cgroup *to) 2645 { 2646 unsigned long flags; 2647 int ret; 2648 bool anon = PageAnon(page); 2649 2650 VM_BUG_ON(from == to); 2651 VM_BUG_ON(PageLRU(page)); 2652 /* 2653 * The page is isolated from LRU. So, collapse function 2654 * will not handle this page. But page splitting can happen. 2655 * Do this check under compound_page_lock(). The caller should 2656 * hold it. 2657 */ 2658 ret = -EBUSY; 2659 if (nr_pages > 1 && !PageTransHuge(page)) 2660 goto out; 2661 2662 lock_page_cgroup(pc); 2663 2664 ret = -EINVAL; 2665 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2666 goto unlock; 2667 2668 move_lock_mem_cgroup(from, &flags); 2669 2670 if (!anon && page_mapped(page)) { 2671 /* Update mapped_file data for mem_cgroup */ 2672 preempt_disable(); 2673 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2674 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2675 preempt_enable(); 2676 } 2677 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2678 2679 /* caller should have done css_get */ 2680 pc->mem_cgroup = to; 2681 mem_cgroup_charge_statistics(to, anon, nr_pages); 2682 /* 2683 * We charges against "to" which may not have any tasks. Then, "to" 2684 * can be under rmdir(). But in current implementation, caller of 2685 * this function is just force_empty() and move charge, so it's 2686 * guaranteed that "to" is never removed. So, we don't check rmdir 2687 * status here. 2688 */ 2689 move_unlock_mem_cgroup(from, &flags); 2690 ret = 0; 2691 unlock: 2692 unlock_page_cgroup(pc); 2693 /* 2694 * check events 2695 */ 2696 memcg_check_events(to, page); 2697 memcg_check_events(from, page); 2698 out: 2699 return ret; 2700 } 2701 2702 /* 2703 * move charges to its parent. 2704 */ 2705 2706 static int mem_cgroup_move_parent(struct page *page, 2707 struct page_cgroup *pc, 2708 struct mem_cgroup *child) 2709 { 2710 struct mem_cgroup *parent; 2711 unsigned int nr_pages; 2712 unsigned long uninitialized_var(flags); 2713 int ret; 2714 2715 /* Is ROOT ? */ 2716 if (mem_cgroup_is_root(child)) 2717 return -EINVAL; 2718 2719 ret = -EBUSY; 2720 if (!get_page_unless_zero(page)) 2721 goto out; 2722 if (isolate_lru_page(page)) 2723 goto put; 2724 2725 nr_pages = hpage_nr_pages(page); 2726 2727 parent = parent_mem_cgroup(child); 2728 /* 2729 * If no parent, move charges to root cgroup. 2730 */ 2731 if (!parent) 2732 parent = root_mem_cgroup; 2733 2734 if (nr_pages > 1) 2735 flags = compound_lock_irqsave(page); 2736 2737 ret = mem_cgroup_move_account(page, nr_pages, 2738 pc, child, parent); 2739 if (!ret) 2740 __mem_cgroup_cancel_local_charge(child, nr_pages); 2741 2742 if (nr_pages > 1) 2743 compound_unlock_irqrestore(page, flags); 2744 putback_lru_page(page); 2745 put: 2746 put_page(page); 2747 out: 2748 return ret; 2749 } 2750 2751 /* 2752 * Charge the memory controller for page usage. 2753 * Return 2754 * 0 if the charge was successful 2755 * < 0 if the cgroup is over its limit 2756 */ 2757 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2758 gfp_t gfp_mask, enum charge_type ctype) 2759 { 2760 struct mem_cgroup *memcg = NULL; 2761 unsigned int nr_pages = 1; 2762 bool oom = true; 2763 int ret; 2764 2765 if (PageTransHuge(page)) { 2766 nr_pages <<= compound_order(page); 2767 VM_BUG_ON(!PageTransHuge(page)); 2768 /* 2769 * Never OOM-kill a process for a huge page. The 2770 * fault handler will fall back to regular pages. 2771 */ 2772 oom = false; 2773 } 2774 2775 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2776 if (ret == -ENOMEM) 2777 return ret; 2778 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2779 return 0; 2780 } 2781 2782 int mem_cgroup_newpage_charge(struct page *page, 2783 struct mm_struct *mm, gfp_t gfp_mask) 2784 { 2785 if (mem_cgroup_disabled()) 2786 return 0; 2787 VM_BUG_ON(page_mapped(page)); 2788 VM_BUG_ON(page->mapping && !PageAnon(page)); 2789 VM_BUG_ON(!mm); 2790 return mem_cgroup_charge_common(page, mm, gfp_mask, 2791 MEM_CGROUP_CHARGE_TYPE_ANON); 2792 } 2793 2794 /* 2795 * While swap-in, try_charge -> commit or cancel, the page is locked. 2796 * And when try_charge() successfully returns, one refcnt to memcg without 2797 * struct page_cgroup is acquired. This refcnt will be consumed by 2798 * "commit()" or removed by "cancel()" 2799 */ 2800 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2801 struct page *page, 2802 gfp_t mask, 2803 struct mem_cgroup **memcgp) 2804 { 2805 struct mem_cgroup *memcg; 2806 struct page_cgroup *pc; 2807 int ret; 2808 2809 pc = lookup_page_cgroup(page); 2810 /* 2811 * Every swap fault against a single page tries to charge the 2812 * page, bail as early as possible. shmem_unuse() encounters 2813 * already charged pages, too. The USED bit is protected by 2814 * the page lock, which serializes swap cache removal, which 2815 * in turn serializes uncharging. 2816 */ 2817 if (PageCgroupUsed(pc)) 2818 return 0; 2819 if (!do_swap_account) 2820 goto charge_cur_mm; 2821 memcg = try_get_mem_cgroup_from_page(page); 2822 if (!memcg) 2823 goto charge_cur_mm; 2824 *memcgp = memcg; 2825 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2826 css_put(&memcg->css); 2827 if (ret == -EINTR) 2828 ret = 0; 2829 return ret; 2830 charge_cur_mm: 2831 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2832 if (ret == -EINTR) 2833 ret = 0; 2834 return ret; 2835 } 2836 2837 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 2838 gfp_t gfp_mask, struct mem_cgroup **memcgp) 2839 { 2840 *memcgp = NULL; 2841 if (mem_cgroup_disabled()) 2842 return 0; 2843 /* 2844 * A racing thread's fault, or swapoff, may have already 2845 * updated the pte, and even removed page from swap cache: in 2846 * those cases unuse_pte()'s pte_same() test will fail; but 2847 * there's also a KSM case which does need to charge the page. 2848 */ 2849 if (!PageSwapCache(page)) { 2850 int ret; 2851 2852 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 2853 if (ret == -EINTR) 2854 ret = 0; 2855 return ret; 2856 } 2857 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 2858 } 2859 2860 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2861 { 2862 if (mem_cgroup_disabled()) 2863 return; 2864 if (!memcg) 2865 return; 2866 __mem_cgroup_cancel_charge(memcg, 1); 2867 } 2868 2869 static void 2870 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2871 enum charge_type ctype) 2872 { 2873 if (mem_cgroup_disabled()) 2874 return; 2875 if (!memcg) 2876 return; 2877 cgroup_exclude_rmdir(&memcg->css); 2878 2879 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2880 /* 2881 * Now swap is on-memory. This means this page may be 2882 * counted both as mem and swap....double count. 2883 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2884 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2885 * may call delete_from_swap_cache() before reach here. 2886 */ 2887 if (do_swap_account && PageSwapCache(page)) { 2888 swp_entry_t ent = {.val = page_private(page)}; 2889 mem_cgroup_uncharge_swap(ent); 2890 } 2891 /* 2892 * At swapin, we may charge account against cgroup which has no tasks. 2893 * So, rmdir()->pre_destroy() can be called while we do this charge. 2894 * In that case, we need to call pre_destroy() again. check it here. 2895 */ 2896 cgroup_release_and_wakeup_rmdir(&memcg->css); 2897 } 2898 2899 void mem_cgroup_commit_charge_swapin(struct page *page, 2900 struct mem_cgroup *memcg) 2901 { 2902 __mem_cgroup_commit_charge_swapin(page, memcg, 2903 MEM_CGROUP_CHARGE_TYPE_ANON); 2904 } 2905 2906 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2907 gfp_t gfp_mask) 2908 { 2909 struct mem_cgroup *memcg = NULL; 2910 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2911 int ret; 2912 2913 if (mem_cgroup_disabled()) 2914 return 0; 2915 if (PageCompound(page)) 2916 return 0; 2917 2918 if (!PageSwapCache(page)) 2919 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2920 else { /* page is swapcache/shmem */ 2921 ret = __mem_cgroup_try_charge_swapin(mm, page, 2922 gfp_mask, &memcg); 2923 if (!ret) 2924 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2925 } 2926 return ret; 2927 } 2928 2929 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2930 unsigned int nr_pages, 2931 const enum charge_type ctype) 2932 { 2933 struct memcg_batch_info *batch = NULL; 2934 bool uncharge_memsw = true; 2935 2936 /* If swapout, usage of swap doesn't decrease */ 2937 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2938 uncharge_memsw = false; 2939 2940 batch = ¤t->memcg_batch; 2941 /* 2942 * In usual, we do css_get() when we remember memcg pointer. 2943 * But in this case, we keep res->usage until end of a series of 2944 * uncharges. Then, it's ok to ignore memcg's refcnt. 2945 */ 2946 if (!batch->memcg) 2947 batch->memcg = memcg; 2948 /* 2949 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2950 * In those cases, all pages freed continuously can be expected to be in 2951 * the same cgroup and we have chance to coalesce uncharges. 2952 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2953 * because we want to do uncharge as soon as possible. 2954 */ 2955 2956 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2957 goto direct_uncharge; 2958 2959 if (nr_pages > 1) 2960 goto direct_uncharge; 2961 2962 /* 2963 * In typical case, batch->memcg == mem. This means we can 2964 * merge a series of uncharges to an uncharge of res_counter. 2965 * If not, we uncharge res_counter ony by one. 2966 */ 2967 if (batch->memcg != memcg) 2968 goto direct_uncharge; 2969 /* remember freed charge and uncharge it later */ 2970 batch->nr_pages++; 2971 if (uncharge_memsw) 2972 batch->memsw_nr_pages++; 2973 return; 2974 direct_uncharge: 2975 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2976 if (uncharge_memsw) 2977 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2978 if (unlikely(batch->memcg != memcg)) 2979 memcg_oom_recover(memcg); 2980 } 2981 2982 /* 2983 * uncharge if !page_mapped(page) 2984 */ 2985 static struct mem_cgroup * 2986 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 2987 bool end_migration) 2988 { 2989 struct mem_cgroup *memcg = NULL; 2990 unsigned int nr_pages = 1; 2991 struct page_cgroup *pc; 2992 bool anon; 2993 2994 if (mem_cgroup_disabled()) 2995 return NULL; 2996 2997 VM_BUG_ON(PageSwapCache(page)); 2998 2999 if (PageTransHuge(page)) { 3000 nr_pages <<= compound_order(page); 3001 VM_BUG_ON(!PageTransHuge(page)); 3002 } 3003 /* 3004 * Check if our page_cgroup is valid 3005 */ 3006 pc = lookup_page_cgroup(page); 3007 if (unlikely(!PageCgroupUsed(pc))) 3008 return NULL; 3009 3010 lock_page_cgroup(pc); 3011 3012 memcg = pc->mem_cgroup; 3013 3014 if (!PageCgroupUsed(pc)) 3015 goto unlock_out; 3016 3017 anon = PageAnon(page); 3018 3019 switch (ctype) { 3020 case MEM_CGROUP_CHARGE_TYPE_ANON: 3021 /* 3022 * Generally PageAnon tells if it's the anon statistics to be 3023 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3024 * used before page reached the stage of being marked PageAnon. 3025 */ 3026 anon = true; 3027 /* fallthrough */ 3028 case MEM_CGROUP_CHARGE_TYPE_DROP: 3029 /* See mem_cgroup_prepare_migration() */ 3030 if (page_mapped(page)) 3031 goto unlock_out; 3032 /* 3033 * Pages under migration may not be uncharged. But 3034 * end_migration() /must/ be the one uncharging the 3035 * unused post-migration page and so it has to call 3036 * here with the migration bit still set. See the 3037 * res_counter handling below. 3038 */ 3039 if (!end_migration && PageCgroupMigration(pc)) 3040 goto unlock_out; 3041 break; 3042 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3043 if (!PageAnon(page)) { /* Shared memory */ 3044 if (page->mapping && !page_is_file_cache(page)) 3045 goto unlock_out; 3046 } else if (page_mapped(page)) /* Anon */ 3047 goto unlock_out; 3048 break; 3049 default: 3050 break; 3051 } 3052 3053 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3054 3055 ClearPageCgroupUsed(pc); 3056 /* 3057 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3058 * freed from LRU. This is safe because uncharged page is expected not 3059 * to be reused (freed soon). Exception is SwapCache, it's handled by 3060 * special functions. 3061 */ 3062 3063 unlock_page_cgroup(pc); 3064 /* 3065 * even after unlock, we have memcg->res.usage here and this memcg 3066 * will never be freed. 3067 */ 3068 memcg_check_events(memcg, page); 3069 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3070 mem_cgroup_swap_statistics(memcg, true); 3071 mem_cgroup_get(memcg); 3072 } 3073 /* 3074 * Migration does not charge the res_counter for the 3075 * replacement page, so leave it alone when phasing out the 3076 * page that is unused after the migration. 3077 */ 3078 if (!end_migration && !mem_cgroup_is_root(memcg)) 3079 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3080 3081 return memcg; 3082 3083 unlock_out: 3084 unlock_page_cgroup(pc); 3085 return NULL; 3086 } 3087 3088 void mem_cgroup_uncharge_page(struct page *page) 3089 { 3090 /* early check. */ 3091 if (page_mapped(page)) 3092 return; 3093 VM_BUG_ON(page->mapping && !PageAnon(page)); 3094 if (PageSwapCache(page)) 3095 return; 3096 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 3097 } 3098 3099 void mem_cgroup_uncharge_cache_page(struct page *page) 3100 { 3101 VM_BUG_ON(page_mapped(page)); 3102 VM_BUG_ON(page->mapping); 3103 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 3104 } 3105 3106 /* 3107 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3108 * In that cases, pages are freed continuously and we can expect pages 3109 * are in the same memcg. All these calls itself limits the number of 3110 * pages freed at once, then uncharge_start/end() is called properly. 3111 * This may be called prural(2) times in a context, 3112 */ 3113 3114 void mem_cgroup_uncharge_start(void) 3115 { 3116 current->memcg_batch.do_batch++; 3117 /* We can do nest. */ 3118 if (current->memcg_batch.do_batch == 1) { 3119 current->memcg_batch.memcg = NULL; 3120 current->memcg_batch.nr_pages = 0; 3121 current->memcg_batch.memsw_nr_pages = 0; 3122 } 3123 } 3124 3125 void mem_cgroup_uncharge_end(void) 3126 { 3127 struct memcg_batch_info *batch = ¤t->memcg_batch; 3128 3129 if (!batch->do_batch) 3130 return; 3131 3132 batch->do_batch--; 3133 if (batch->do_batch) /* If stacked, do nothing. */ 3134 return; 3135 3136 if (!batch->memcg) 3137 return; 3138 /* 3139 * This "batch->memcg" is valid without any css_get/put etc... 3140 * bacause we hide charges behind us. 3141 */ 3142 if (batch->nr_pages) 3143 res_counter_uncharge(&batch->memcg->res, 3144 batch->nr_pages * PAGE_SIZE); 3145 if (batch->memsw_nr_pages) 3146 res_counter_uncharge(&batch->memcg->memsw, 3147 batch->memsw_nr_pages * PAGE_SIZE); 3148 memcg_oom_recover(batch->memcg); 3149 /* forget this pointer (for sanity check) */ 3150 batch->memcg = NULL; 3151 } 3152 3153 #ifdef CONFIG_SWAP 3154 /* 3155 * called after __delete_from_swap_cache() and drop "page" account. 3156 * memcg information is recorded to swap_cgroup of "ent" 3157 */ 3158 void 3159 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3160 { 3161 struct mem_cgroup *memcg; 3162 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3163 3164 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3165 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3166 3167 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 3168 3169 /* 3170 * record memcg information, if swapout && memcg != NULL, 3171 * mem_cgroup_get() was called in uncharge(). 3172 */ 3173 if (do_swap_account && swapout && memcg) 3174 swap_cgroup_record(ent, css_id(&memcg->css)); 3175 } 3176 #endif 3177 3178 #ifdef CONFIG_MEMCG_SWAP 3179 /* 3180 * called from swap_entry_free(). remove record in swap_cgroup and 3181 * uncharge "memsw" account. 3182 */ 3183 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3184 { 3185 struct mem_cgroup *memcg; 3186 unsigned short id; 3187 3188 if (!do_swap_account) 3189 return; 3190 3191 id = swap_cgroup_record(ent, 0); 3192 rcu_read_lock(); 3193 memcg = mem_cgroup_lookup(id); 3194 if (memcg) { 3195 /* 3196 * We uncharge this because swap is freed. 3197 * This memcg can be obsolete one. We avoid calling css_tryget 3198 */ 3199 if (!mem_cgroup_is_root(memcg)) 3200 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3201 mem_cgroup_swap_statistics(memcg, false); 3202 mem_cgroup_put(memcg); 3203 } 3204 rcu_read_unlock(); 3205 } 3206 3207 /** 3208 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3209 * @entry: swap entry to be moved 3210 * @from: mem_cgroup which the entry is moved from 3211 * @to: mem_cgroup which the entry is moved to 3212 * 3213 * It succeeds only when the swap_cgroup's record for this entry is the same 3214 * as the mem_cgroup's id of @from. 3215 * 3216 * Returns 0 on success, -EINVAL on failure. 3217 * 3218 * The caller must have charged to @to, IOW, called res_counter_charge() about 3219 * both res and memsw, and called css_get(). 3220 */ 3221 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3222 struct mem_cgroup *from, struct mem_cgroup *to) 3223 { 3224 unsigned short old_id, new_id; 3225 3226 old_id = css_id(&from->css); 3227 new_id = css_id(&to->css); 3228 3229 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3230 mem_cgroup_swap_statistics(from, false); 3231 mem_cgroup_swap_statistics(to, true); 3232 /* 3233 * This function is only called from task migration context now. 3234 * It postpones res_counter and refcount handling till the end 3235 * of task migration(mem_cgroup_clear_mc()) for performance 3236 * improvement. But we cannot postpone mem_cgroup_get(to) 3237 * because if the process that has been moved to @to does 3238 * swap-in, the refcount of @to might be decreased to 0. 3239 */ 3240 mem_cgroup_get(to); 3241 return 0; 3242 } 3243 return -EINVAL; 3244 } 3245 #else 3246 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3247 struct mem_cgroup *from, struct mem_cgroup *to) 3248 { 3249 return -EINVAL; 3250 } 3251 #endif 3252 3253 /* 3254 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3255 * page belongs to. 3256 */ 3257 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 3258 struct mem_cgroup **memcgp) 3259 { 3260 struct mem_cgroup *memcg = NULL; 3261 struct page_cgroup *pc; 3262 enum charge_type ctype; 3263 3264 *memcgp = NULL; 3265 3266 VM_BUG_ON(PageTransHuge(page)); 3267 if (mem_cgroup_disabled()) 3268 return; 3269 3270 pc = lookup_page_cgroup(page); 3271 lock_page_cgroup(pc); 3272 if (PageCgroupUsed(pc)) { 3273 memcg = pc->mem_cgroup; 3274 css_get(&memcg->css); 3275 /* 3276 * At migrating an anonymous page, its mapcount goes down 3277 * to 0 and uncharge() will be called. But, even if it's fully 3278 * unmapped, migration may fail and this page has to be 3279 * charged again. We set MIGRATION flag here and delay uncharge 3280 * until end_migration() is called 3281 * 3282 * Corner Case Thinking 3283 * A) 3284 * When the old page was mapped as Anon and it's unmap-and-freed 3285 * while migration was ongoing. 3286 * If unmap finds the old page, uncharge() of it will be delayed 3287 * until end_migration(). If unmap finds a new page, it's 3288 * uncharged when it make mapcount to be 1->0. If unmap code 3289 * finds swap_migration_entry, the new page will not be mapped 3290 * and end_migration() will find it(mapcount==0). 3291 * 3292 * B) 3293 * When the old page was mapped but migraion fails, the kernel 3294 * remaps it. A charge for it is kept by MIGRATION flag even 3295 * if mapcount goes down to 0. We can do remap successfully 3296 * without charging it again. 3297 * 3298 * C) 3299 * The "old" page is under lock_page() until the end of 3300 * migration, so, the old page itself will not be swapped-out. 3301 * If the new page is swapped out before end_migraton, our 3302 * hook to usual swap-out path will catch the event. 3303 */ 3304 if (PageAnon(page)) 3305 SetPageCgroupMigration(pc); 3306 } 3307 unlock_page_cgroup(pc); 3308 /* 3309 * If the page is not charged at this point, 3310 * we return here. 3311 */ 3312 if (!memcg) 3313 return; 3314 3315 *memcgp = memcg; 3316 /* 3317 * We charge new page before it's used/mapped. So, even if unlock_page() 3318 * is called before end_migration, we can catch all events on this new 3319 * page. In the case new page is migrated but not remapped, new page's 3320 * mapcount will be finally 0 and we call uncharge in end_migration(). 3321 */ 3322 if (PageAnon(page)) 3323 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 3324 else 3325 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3326 /* 3327 * The page is committed to the memcg, but it's not actually 3328 * charged to the res_counter since we plan on replacing the 3329 * old one and only one page is going to be left afterwards. 3330 */ 3331 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3332 } 3333 3334 /* remove redundant charge if migration failed*/ 3335 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3336 struct page *oldpage, struct page *newpage, bool migration_ok) 3337 { 3338 struct page *used, *unused; 3339 struct page_cgroup *pc; 3340 bool anon; 3341 3342 if (!memcg) 3343 return; 3344 /* blocks rmdir() */ 3345 cgroup_exclude_rmdir(&memcg->css); 3346 if (!migration_ok) { 3347 used = oldpage; 3348 unused = newpage; 3349 } else { 3350 used = newpage; 3351 unused = oldpage; 3352 } 3353 anon = PageAnon(used); 3354 __mem_cgroup_uncharge_common(unused, 3355 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 3356 : MEM_CGROUP_CHARGE_TYPE_CACHE, 3357 true); 3358 css_put(&memcg->css); 3359 /* 3360 * We disallowed uncharge of pages under migration because mapcount 3361 * of the page goes down to zero, temporarly. 3362 * Clear the flag and check the page should be charged. 3363 */ 3364 pc = lookup_page_cgroup(oldpage); 3365 lock_page_cgroup(pc); 3366 ClearPageCgroupMigration(pc); 3367 unlock_page_cgroup(pc); 3368 3369 /* 3370 * If a page is a file cache, radix-tree replacement is very atomic 3371 * and we can skip this check. When it was an Anon page, its mapcount 3372 * goes down to 0. But because we added MIGRATION flage, it's not 3373 * uncharged yet. There are several case but page->mapcount check 3374 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3375 * check. (see prepare_charge() also) 3376 */ 3377 if (anon) 3378 mem_cgroup_uncharge_page(used); 3379 /* 3380 * At migration, we may charge account against cgroup which has no 3381 * tasks. 3382 * So, rmdir()->pre_destroy() can be called while we do this charge. 3383 * In that case, we need to call pre_destroy() again. check it here. 3384 */ 3385 cgroup_release_and_wakeup_rmdir(&memcg->css); 3386 } 3387 3388 /* 3389 * At replace page cache, newpage is not under any memcg but it's on 3390 * LRU. So, this function doesn't touch res_counter but handles LRU 3391 * in correct way. Both pages are locked so we cannot race with uncharge. 3392 */ 3393 void mem_cgroup_replace_page_cache(struct page *oldpage, 3394 struct page *newpage) 3395 { 3396 struct mem_cgroup *memcg = NULL; 3397 struct page_cgroup *pc; 3398 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3399 3400 if (mem_cgroup_disabled()) 3401 return; 3402 3403 pc = lookup_page_cgroup(oldpage); 3404 /* fix accounting on old pages */ 3405 lock_page_cgroup(pc); 3406 if (PageCgroupUsed(pc)) { 3407 memcg = pc->mem_cgroup; 3408 mem_cgroup_charge_statistics(memcg, false, -1); 3409 ClearPageCgroupUsed(pc); 3410 } 3411 unlock_page_cgroup(pc); 3412 3413 /* 3414 * When called from shmem_replace_page(), in some cases the 3415 * oldpage has already been charged, and in some cases not. 3416 */ 3417 if (!memcg) 3418 return; 3419 /* 3420 * Even if newpage->mapping was NULL before starting replacement, 3421 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3422 * LRU while we overwrite pc->mem_cgroup. 3423 */ 3424 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3425 } 3426 3427 #ifdef CONFIG_DEBUG_VM 3428 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3429 { 3430 struct page_cgroup *pc; 3431 3432 pc = lookup_page_cgroup(page); 3433 /* 3434 * Can be NULL while feeding pages into the page allocator for 3435 * the first time, i.e. during boot or memory hotplug; 3436 * or when mem_cgroup_disabled(). 3437 */ 3438 if (likely(pc) && PageCgroupUsed(pc)) 3439 return pc; 3440 return NULL; 3441 } 3442 3443 bool mem_cgroup_bad_page_check(struct page *page) 3444 { 3445 if (mem_cgroup_disabled()) 3446 return false; 3447 3448 return lookup_page_cgroup_used(page) != NULL; 3449 } 3450 3451 void mem_cgroup_print_bad_page(struct page *page) 3452 { 3453 struct page_cgroup *pc; 3454 3455 pc = lookup_page_cgroup_used(page); 3456 if (pc) { 3457 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3458 pc, pc->flags, pc->mem_cgroup); 3459 } 3460 } 3461 #endif 3462 3463 static DEFINE_MUTEX(set_limit_mutex); 3464 3465 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3466 unsigned long long val) 3467 { 3468 int retry_count; 3469 u64 memswlimit, memlimit; 3470 int ret = 0; 3471 int children = mem_cgroup_count_children(memcg); 3472 u64 curusage, oldusage; 3473 int enlarge; 3474 3475 /* 3476 * For keeping hierarchical_reclaim simple, how long we should retry 3477 * is depends on callers. We set our retry-count to be function 3478 * of # of children which we should visit in this loop. 3479 */ 3480 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3481 3482 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3483 3484 enlarge = 0; 3485 while (retry_count) { 3486 if (signal_pending(current)) { 3487 ret = -EINTR; 3488 break; 3489 } 3490 /* 3491 * Rather than hide all in some function, I do this in 3492 * open coded manner. You see what this really does. 3493 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3494 */ 3495 mutex_lock(&set_limit_mutex); 3496 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3497 if (memswlimit < val) { 3498 ret = -EINVAL; 3499 mutex_unlock(&set_limit_mutex); 3500 break; 3501 } 3502 3503 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3504 if (memlimit < val) 3505 enlarge = 1; 3506 3507 ret = res_counter_set_limit(&memcg->res, val); 3508 if (!ret) { 3509 if (memswlimit == val) 3510 memcg->memsw_is_minimum = true; 3511 else 3512 memcg->memsw_is_minimum = false; 3513 } 3514 mutex_unlock(&set_limit_mutex); 3515 3516 if (!ret) 3517 break; 3518 3519 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3520 MEM_CGROUP_RECLAIM_SHRINK); 3521 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3522 /* Usage is reduced ? */ 3523 if (curusage >= oldusage) 3524 retry_count--; 3525 else 3526 oldusage = curusage; 3527 } 3528 if (!ret && enlarge) 3529 memcg_oom_recover(memcg); 3530 3531 return ret; 3532 } 3533 3534 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3535 unsigned long long val) 3536 { 3537 int retry_count; 3538 u64 memlimit, memswlimit, oldusage, curusage; 3539 int children = mem_cgroup_count_children(memcg); 3540 int ret = -EBUSY; 3541 int enlarge = 0; 3542 3543 /* see mem_cgroup_resize_res_limit */ 3544 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3545 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3546 while (retry_count) { 3547 if (signal_pending(current)) { 3548 ret = -EINTR; 3549 break; 3550 } 3551 /* 3552 * Rather than hide all in some function, I do this in 3553 * open coded manner. You see what this really does. 3554 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3555 */ 3556 mutex_lock(&set_limit_mutex); 3557 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3558 if (memlimit > val) { 3559 ret = -EINVAL; 3560 mutex_unlock(&set_limit_mutex); 3561 break; 3562 } 3563 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3564 if (memswlimit < val) 3565 enlarge = 1; 3566 ret = res_counter_set_limit(&memcg->memsw, val); 3567 if (!ret) { 3568 if (memlimit == val) 3569 memcg->memsw_is_minimum = true; 3570 else 3571 memcg->memsw_is_minimum = false; 3572 } 3573 mutex_unlock(&set_limit_mutex); 3574 3575 if (!ret) 3576 break; 3577 3578 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3579 MEM_CGROUP_RECLAIM_NOSWAP | 3580 MEM_CGROUP_RECLAIM_SHRINK); 3581 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3582 /* Usage is reduced ? */ 3583 if (curusage >= oldusage) 3584 retry_count--; 3585 else 3586 oldusage = curusage; 3587 } 3588 if (!ret && enlarge) 3589 memcg_oom_recover(memcg); 3590 return ret; 3591 } 3592 3593 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3594 gfp_t gfp_mask, 3595 unsigned long *total_scanned) 3596 { 3597 unsigned long nr_reclaimed = 0; 3598 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3599 unsigned long reclaimed; 3600 int loop = 0; 3601 struct mem_cgroup_tree_per_zone *mctz; 3602 unsigned long long excess; 3603 unsigned long nr_scanned; 3604 3605 if (order > 0) 3606 return 0; 3607 3608 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3609 /* 3610 * This loop can run a while, specially if mem_cgroup's continuously 3611 * keep exceeding their soft limit and putting the system under 3612 * pressure 3613 */ 3614 do { 3615 if (next_mz) 3616 mz = next_mz; 3617 else 3618 mz = mem_cgroup_largest_soft_limit_node(mctz); 3619 if (!mz) 3620 break; 3621 3622 nr_scanned = 0; 3623 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3624 gfp_mask, &nr_scanned); 3625 nr_reclaimed += reclaimed; 3626 *total_scanned += nr_scanned; 3627 spin_lock(&mctz->lock); 3628 3629 /* 3630 * If we failed to reclaim anything from this memory cgroup 3631 * it is time to move on to the next cgroup 3632 */ 3633 next_mz = NULL; 3634 if (!reclaimed) { 3635 do { 3636 /* 3637 * Loop until we find yet another one. 3638 * 3639 * By the time we get the soft_limit lock 3640 * again, someone might have aded the 3641 * group back on the RB tree. Iterate to 3642 * make sure we get a different mem. 3643 * mem_cgroup_largest_soft_limit_node returns 3644 * NULL if no other cgroup is present on 3645 * the tree 3646 */ 3647 next_mz = 3648 __mem_cgroup_largest_soft_limit_node(mctz); 3649 if (next_mz == mz) 3650 css_put(&next_mz->memcg->css); 3651 else /* next_mz == NULL or other memcg */ 3652 break; 3653 } while (1); 3654 } 3655 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3656 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3657 /* 3658 * One school of thought says that we should not add 3659 * back the node to the tree if reclaim returns 0. 3660 * But our reclaim could return 0, simply because due 3661 * to priority we are exposing a smaller subset of 3662 * memory to reclaim from. Consider this as a longer 3663 * term TODO. 3664 */ 3665 /* If excess == 0, no tree ops */ 3666 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3667 spin_unlock(&mctz->lock); 3668 css_put(&mz->memcg->css); 3669 loop++; 3670 /* 3671 * Could not reclaim anything and there are no more 3672 * mem cgroups to try or we seem to be looping without 3673 * reclaiming anything. 3674 */ 3675 if (!nr_reclaimed && 3676 (next_mz == NULL || 3677 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3678 break; 3679 } while (!nr_reclaimed); 3680 if (next_mz) 3681 css_put(&next_mz->memcg->css); 3682 return nr_reclaimed; 3683 } 3684 3685 /* 3686 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3687 * reclaim the pages page themselves - it just removes the page_cgroups. 3688 * Returns true if some page_cgroups were not freed, indicating that the caller 3689 * must retry this operation. 3690 */ 3691 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3692 int node, int zid, enum lru_list lru) 3693 { 3694 struct mem_cgroup_per_zone *mz; 3695 unsigned long flags, loop; 3696 struct list_head *list; 3697 struct page *busy; 3698 struct zone *zone; 3699 3700 zone = &NODE_DATA(node)->node_zones[zid]; 3701 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3702 list = &mz->lruvec.lists[lru]; 3703 3704 loop = mz->lru_size[lru]; 3705 /* give some margin against EBUSY etc...*/ 3706 loop += 256; 3707 busy = NULL; 3708 while (loop--) { 3709 struct page_cgroup *pc; 3710 struct page *page; 3711 3712 spin_lock_irqsave(&zone->lru_lock, flags); 3713 if (list_empty(list)) { 3714 spin_unlock_irqrestore(&zone->lru_lock, flags); 3715 break; 3716 } 3717 page = list_entry(list->prev, struct page, lru); 3718 if (busy == page) { 3719 list_move(&page->lru, list); 3720 busy = NULL; 3721 spin_unlock_irqrestore(&zone->lru_lock, flags); 3722 continue; 3723 } 3724 spin_unlock_irqrestore(&zone->lru_lock, flags); 3725 3726 pc = lookup_page_cgroup(page); 3727 3728 if (mem_cgroup_move_parent(page, pc, memcg)) { 3729 /* found lock contention or "pc" is obsolete. */ 3730 busy = page; 3731 cond_resched(); 3732 } else 3733 busy = NULL; 3734 } 3735 return !list_empty(list); 3736 } 3737 3738 /* 3739 * make mem_cgroup's charge to be 0 if there is no task. 3740 * This enables deleting this mem_cgroup. 3741 */ 3742 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3743 { 3744 int ret; 3745 int node, zid, shrink; 3746 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3747 struct cgroup *cgrp = memcg->css.cgroup; 3748 3749 css_get(&memcg->css); 3750 3751 shrink = 0; 3752 /* should free all ? */ 3753 if (free_all) 3754 goto try_to_free; 3755 move_account: 3756 do { 3757 ret = -EBUSY; 3758 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3759 goto out; 3760 /* This is for making all *used* pages to be on LRU. */ 3761 lru_add_drain_all(); 3762 drain_all_stock_sync(memcg); 3763 ret = 0; 3764 mem_cgroup_start_move(memcg); 3765 for_each_node_state(node, N_HIGH_MEMORY) { 3766 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3767 enum lru_list lru; 3768 for_each_lru(lru) { 3769 ret = mem_cgroup_force_empty_list(memcg, 3770 node, zid, lru); 3771 if (ret) 3772 break; 3773 } 3774 } 3775 if (ret) 3776 break; 3777 } 3778 mem_cgroup_end_move(memcg); 3779 memcg_oom_recover(memcg); 3780 cond_resched(); 3781 /* "ret" should also be checked to ensure all lists are empty. */ 3782 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3783 out: 3784 css_put(&memcg->css); 3785 return ret; 3786 3787 try_to_free: 3788 /* returns EBUSY if there is a task or if we come here twice. */ 3789 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3790 ret = -EBUSY; 3791 goto out; 3792 } 3793 /* we call try-to-free pages for make this cgroup empty */ 3794 lru_add_drain_all(); 3795 /* try to free all pages in this cgroup */ 3796 shrink = 1; 3797 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3798 int progress; 3799 3800 if (signal_pending(current)) { 3801 ret = -EINTR; 3802 goto out; 3803 } 3804 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3805 false); 3806 if (!progress) { 3807 nr_retries--; 3808 /* maybe some writeback is necessary */ 3809 congestion_wait(BLK_RW_ASYNC, HZ/10); 3810 } 3811 3812 } 3813 lru_add_drain(); 3814 /* try move_account...there may be some *locked* pages. */ 3815 goto move_account; 3816 } 3817 3818 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3819 { 3820 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3821 } 3822 3823 3824 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3825 { 3826 return mem_cgroup_from_cont(cont)->use_hierarchy; 3827 } 3828 3829 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3830 u64 val) 3831 { 3832 int retval = 0; 3833 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3834 struct cgroup *parent = cont->parent; 3835 struct mem_cgroup *parent_memcg = NULL; 3836 3837 if (parent) 3838 parent_memcg = mem_cgroup_from_cont(parent); 3839 3840 cgroup_lock(); 3841 3842 if (memcg->use_hierarchy == val) 3843 goto out; 3844 3845 /* 3846 * If parent's use_hierarchy is set, we can't make any modifications 3847 * in the child subtrees. If it is unset, then the change can 3848 * occur, provided the current cgroup has no children. 3849 * 3850 * For the root cgroup, parent_mem is NULL, we allow value to be 3851 * set if there are no children. 3852 */ 3853 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3854 (val == 1 || val == 0)) { 3855 if (list_empty(&cont->children)) 3856 memcg->use_hierarchy = val; 3857 else 3858 retval = -EBUSY; 3859 } else 3860 retval = -EINVAL; 3861 3862 out: 3863 cgroup_unlock(); 3864 3865 return retval; 3866 } 3867 3868 3869 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3870 enum mem_cgroup_stat_index idx) 3871 { 3872 struct mem_cgroup *iter; 3873 long val = 0; 3874 3875 /* Per-cpu values can be negative, use a signed accumulator */ 3876 for_each_mem_cgroup_tree(iter, memcg) 3877 val += mem_cgroup_read_stat(iter, idx); 3878 3879 if (val < 0) /* race ? */ 3880 val = 0; 3881 return val; 3882 } 3883 3884 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3885 { 3886 u64 val; 3887 3888 if (!mem_cgroup_is_root(memcg)) { 3889 if (!swap) 3890 return res_counter_read_u64(&memcg->res, RES_USAGE); 3891 else 3892 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3893 } 3894 3895 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3896 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3897 3898 if (swap) 3899 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 3900 3901 return val << PAGE_SHIFT; 3902 } 3903 3904 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3905 struct file *file, char __user *buf, 3906 size_t nbytes, loff_t *ppos) 3907 { 3908 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3909 char str[64]; 3910 u64 val; 3911 int type, name, len; 3912 3913 type = MEMFILE_TYPE(cft->private); 3914 name = MEMFILE_ATTR(cft->private); 3915 3916 if (!do_swap_account && type == _MEMSWAP) 3917 return -EOPNOTSUPP; 3918 3919 switch (type) { 3920 case _MEM: 3921 if (name == RES_USAGE) 3922 val = mem_cgroup_usage(memcg, false); 3923 else 3924 val = res_counter_read_u64(&memcg->res, name); 3925 break; 3926 case _MEMSWAP: 3927 if (name == RES_USAGE) 3928 val = mem_cgroup_usage(memcg, true); 3929 else 3930 val = res_counter_read_u64(&memcg->memsw, name); 3931 break; 3932 default: 3933 BUG(); 3934 } 3935 3936 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3937 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3938 } 3939 /* 3940 * The user of this function is... 3941 * RES_LIMIT. 3942 */ 3943 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3944 const char *buffer) 3945 { 3946 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3947 int type, name; 3948 unsigned long long val; 3949 int ret; 3950 3951 type = MEMFILE_TYPE(cft->private); 3952 name = MEMFILE_ATTR(cft->private); 3953 3954 if (!do_swap_account && type == _MEMSWAP) 3955 return -EOPNOTSUPP; 3956 3957 switch (name) { 3958 case RES_LIMIT: 3959 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3960 ret = -EINVAL; 3961 break; 3962 } 3963 /* This function does all necessary parse...reuse it */ 3964 ret = res_counter_memparse_write_strategy(buffer, &val); 3965 if (ret) 3966 break; 3967 if (type == _MEM) 3968 ret = mem_cgroup_resize_limit(memcg, val); 3969 else 3970 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3971 break; 3972 case RES_SOFT_LIMIT: 3973 ret = res_counter_memparse_write_strategy(buffer, &val); 3974 if (ret) 3975 break; 3976 /* 3977 * For memsw, soft limits are hard to implement in terms 3978 * of semantics, for now, we support soft limits for 3979 * control without swap 3980 */ 3981 if (type == _MEM) 3982 ret = res_counter_set_soft_limit(&memcg->res, val); 3983 else 3984 ret = -EINVAL; 3985 break; 3986 default: 3987 ret = -EINVAL; /* should be BUG() ? */ 3988 break; 3989 } 3990 return ret; 3991 } 3992 3993 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3994 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3995 { 3996 struct cgroup *cgroup; 3997 unsigned long long min_limit, min_memsw_limit, tmp; 3998 3999 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4000 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4001 cgroup = memcg->css.cgroup; 4002 if (!memcg->use_hierarchy) 4003 goto out; 4004 4005 while (cgroup->parent) { 4006 cgroup = cgroup->parent; 4007 memcg = mem_cgroup_from_cont(cgroup); 4008 if (!memcg->use_hierarchy) 4009 break; 4010 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4011 min_limit = min(min_limit, tmp); 4012 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4013 min_memsw_limit = min(min_memsw_limit, tmp); 4014 } 4015 out: 4016 *mem_limit = min_limit; 4017 *memsw_limit = min_memsw_limit; 4018 } 4019 4020 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4021 { 4022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4023 int type, name; 4024 4025 type = MEMFILE_TYPE(event); 4026 name = MEMFILE_ATTR(event); 4027 4028 if (!do_swap_account && type == _MEMSWAP) 4029 return -EOPNOTSUPP; 4030 4031 switch (name) { 4032 case RES_MAX_USAGE: 4033 if (type == _MEM) 4034 res_counter_reset_max(&memcg->res); 4035 else 4036 res_counter_reset_max(&memcg->memsw); 4037 break; 4038 case RES_FAILCNT: 4039 if (type == _MEM) 4040 res_counter_reset_failcnt(&memcg->res); 4041 else 4042 res_counter_reset_failcnt(&memcg->memsw); 4043 break; 4044 } 4045 4046 return 0; 4047 } 4048 4049 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4050 struct cftype *cft) 4051 { 4052 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4053 } 4054 4055 #ifdef CONFIG_MMU 4056 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4057 struct cftype *cft, u64 val) 4058 { 4059 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4060 4061 if (val >= (1 << NR_MOVE_TYPE)) 4062 return -EINVAL; 4063 /* 4064 * We check this value several times in both in can_attach() and 4065 * attach(), so we need cgroup lock to prevent this value from being 4066 * inconsistent. 4067 */ 4068 cgroup_lock(); 4069 memcg->move_charge_at_immigrate = val; 4070 cgroup_unlock(); 4071 4072 return 0; 4073 } 4074 #else 4075 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4076 struct cftype *cft, u64 val) 4077 { 4078 return -ENOSYS; 4079 } 4080 #endif 4081 4082 #ifdef CONFIG_NUMA 4083 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4084 struct seq_file *m) 4085 { 4086 int nid; 4087 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4088 unsigned long node_nr; 4089 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4090 4091 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4092 seq_printf(m, "total=%lu", total_nr); 4093 for_each_node_state(nid, N_HIGH_MEMORY) { 4094 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4095 seq_printf(m, " N%d=%lu", nid, node_nr); 4096 } 4097 seq_putc(m, '\n'); 4098 4099 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4100 seq_printf(m, "file=%lu", file_nr); 4101 for_each_node_state(nid, N_HIGH_MEMORY) { 4102 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4103 LRU_ALL_FILE); 4104 seq_printf(m, " N%d=%lu", nid, node_nr); 4105 } 4106 seq_putc(m, '\n'); 4107 4108 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4109 seq_printf(m, "anon=%lu", anon_nr); 4110 for_each_node_state(nid, N_HIGH_MEMORY) { 4111 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4112 LRU_ALL_ANON); 4113 seq_printf(m, " N%d=%lu", nid, node_nr); 4114 } 4115 seq_putc(m, '\n'); 4116 4117 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4118 seq_printf(m, "unevictable=%lu", unevictable_nr); 4119 for_each_node_state(nid, N_HIGH_MEMORY) { 4120 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4121 BIT(LRU_UNEVICTABLE)); 4122 seq_printf(m, " N%d=%lu", nid, node_nr); 4123 } 4124 seq_putc(m, '\n'); 4125 return 0; 4126 } 4127 #endif /* CONFIG_NUMA */ 4128 4129 static const char * const mem_cgroup_lru_names[] = { 4130 "inactive_anon", 4131 "active_anon", 4132 "inactive_file", 4133 "active_file", 4134 "unevictable", 4135 }; 4136 4137 static inline void mem_cgroup_lru_names_not_uptodate(void) 4138 { 4139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4140 } 4141 4142 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 4143 struct seq_file *m) 4144 { 4145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4146 struct mem_cgroup *mi; 4147 unsigned int i; 4148 4149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4151 continue; 4152 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4153 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4154 } 4155 4156 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4157 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4158 mem_cgroup_read_events(memcg, i)); 4159 4160 for (i = 0; i < NR_LRU_LISTS; i++) 4161 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4162 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4163 4164 /* Hierarchical information */ 4165 { 4166 unsigned long long limit, memsw_limit; 4167 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4168 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4169 if (do_swap_account) 4170 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4171 memsw_limit); 4172 } 4173 4174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4175 long long val = 0; 4176 4177 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4178 continue; 4179 for_each_mem_cgroup_tree(mi, memcg) 4180 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4181 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4182 } 4183 4184 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4185 unsigned long long val = 0; 4186 4187 for_each_mem_cgroup_tree(mi, memcg) 4188 val += mem_cgroup_read_events(mi, i); 4189 seq_printf(m, "total_%s %llu\n", 4190 mem_cgroup_events_names[i], val); 4191 } 4192 4193 for (i = 0; i < NR_LRU_LISTS; i++) { 4194 unsigned long long val = 0; 4195 4196 for_each_mem_cgroup_tree(mi, memcg) 4197 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4198 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4199 } 4200 4201 #ifdef CONFIG_DEBUG_VM 4202 { 4203 int nid, zid; 4204 struct mem_cgroup_per_zone *mz; 4205 struct zone_reclaim_stat *rstat; 4206 unsigned long recent_rotated[2] = {0, 0}; 4207 unsigned long recent_scanned[2] = {0, 0}; 4208 4209 for_each_online_node(nid) 4210 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4211 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4212 rstat = &mz->lruvec.reclaim_stat; 4213 4214 recent_rotated[0] += rstat->recent_rotated[0]; 4215 recent_rotated[1] += rstat->recent_rotated[1]; 4216 recent_scanned[0] += rstat->recent_scanned[0]; 4217 recent_scanned[1] += rstat->recent_scanned[1]; 4218 } 4219 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4220 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4221 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4222 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4223 } 4224 #endif 4225 4226 return 0; 4227 } 4228 4229 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4230 { 4231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4232 4233 return mem_cgroup_swappiness(memcg); 4234 } 4235 4236 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4237 u64 val) 4238 { 4239 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4240 struct mem_cgroup *parent; 4241 4242 if (val > 100) 4243 return -EINVAL; 4244 4245 if (cgrp->parent == NULL) 4246 return -EINVAL; 4247 4248 parent = mem_cgroup_from_cont(cgrp->parent); 4249 4250 cgroup_lock(); 4251 4252 /* If under hierarchy, only empty-root can set this value */ 4253 if ((parent->use_hierarchy) || 4254 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4255 cgroup_unlock(); 4256 return -EINVAL; 4257 } 4258 4259 memcg->swappiness = val; 4260 4261 cgroup_unlock(); 4262 4263 return 0; 4264 } 4265 4266 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4267 { 4268 struct mem_cgroup_threshold_ary *t; 4269 u64 usage; 4270 int i; 4271 4272 rcu_read_lock(); 4273 if (!swap) 4274 t = rcu_dereference(memcg->thresholds.primary); 4275 else 4276 t = rcu_dereference(memcg->memsw_thresholds.primary); 4277 4278 if (!t) 4279 goto unlock; 4280 4281 usage = mem_cgroup_usage(memcg, swap); 4282 4283 /* 4284 * current_threshold points to threshold just below or equal to usage. 4285 * If it's not true, a threshold was crossed after last 4286 * call of __mem_cgroup_threshold(). 4287 */ 4288 i = t->current_threshold; 4289 4290 /* 4291 * Iterate backward over array of thresholds starting from 4292 * current_threshold and check if a threshold is crossed. 4293 * If none of thresholds below usage is crossed, we read 4294 * only one element of the array here. 4295 */ 4296 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4297 eventfd_signal(t->entries[i].eventfd, 1); 4298 4299 /* i = current_threshold + 1 */ 4300 i++; 4301 4302 /* 4303 * Iterate forward over array of thresholds starting from 4304 * current_threshold+1 and check if a threshold is crossed. 4305 * If none of thresholds above usage is crossed, we read 4306 * only one element of the array here. 4307 */ 4308 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4309 eventfd_signal(t->entries[i].eventfd, 1); 4310 4311 /* Update current_threshold */ 4312 t->current_threshold = i - 1; 4313 unlock: 4314 rcu_read_unlock(); 4315 } 4316 4317 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4318 { 4319 while (memcg) { 4320 __mem_cgroup_threshold(memcg, false); 4321 if (do_swap_account) 4322 __mem_cgroup_threshold(memcg, true); 4323 4324 memcg = parent_mem_cgroup(memcg); 4325 } 4326 } 4327 4328 static int compare_thresholds(const void *a, const void *b) 4329 { 4330 const struct mem_cgroup_threshold *_a = a; 4331 const struct mem_cgroup_threshold *_b = b; 4332 4333 return _a->threshold - _b->threshold; 4334 } 4335 4336 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4337 { 4338 struct mem_cgroup_eventfd_list *ev; 4339 4340 list_for_each_entry(ev, &memcg->oom_notify, list) 4341 eventfd_signal(ev->eventfd, 1); 4342 return 0; 4343 } 4344 4345 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4346 { 4347 struct mem_cgroup *iter; 4348 4349 for_each_mem_cgroup_tree(iter, memcg) 4350 mem_cgroup_oom_notify_cb(iter); 4351 } 4352 4353 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4354 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4355 { 4356 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4357 struct mem_cgroup_thresholds *thresholds; 4358 struct mem_cgroup_threshold_ary *new; 4359 int type = MEMFILE_TYPE(cft->private); 4360 u64 threshold, usage; 4361 int i, size, ret; 4362 4363 ret = res_counter_memparse_write_strategy(args, &threshold); 4364 if (ret) 4365 return ret; 4366 4367 mutex_lock(&memcg->thresholds_lock); 4368 4369 if (type == _MEM) 4370 thresholds = &memcg->thresholds; 4371 else if (type == _MEMSWAP) 4372 thresholds = &memcg->memsw_thresholds; 4373 else 4374 BUG(); 4375 4376 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4377 4378 /* Check if a threshold crossed before adding a new one */ 4379 if (thresholds->primary) 4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4381 4382 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4383 4384 /* Allocate memory for new array of thresholds */ 4385 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4386 GFP_KERNEL); 4387 if (!new) { 4388 ret = -ENOMEM; 4389 goto unlock; 4390 } 4391 new->size = size; 4392 4393 /* Copy thresholds (if any) to new array */ 4394 if (thresholds->primary) { 4395 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4396 sizeof(struct mem_cgroup_threshold)); 4397 } 4398 4399 /* Add new threshold */ 4400 new->entries[size - 1].eventfd = eventfd; 4401 new->entries[size - 1].threshold = threshold; 4402 4403 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4404 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4405 compare_thresholds, NULL); 4406 4407 /* Find current threshold */ 4408 new->current_threshold = -1; 4409 for (i = 0; i < size; i++) { 4410 if (new->entries[i].threshold <= usage) { 4411 /* 4412 * new->current_threshold will not be used until 4413 * rcu_assign_pointer(), so it's safe to increment 4414 * it here. 4415 */ 4416 ++new->current_threshold; 4417 } else 4418 break; 4419 } 4420 4421 /* Free old spare buffer and save old primary buffer as spare */ 4422 kfree(thresholds->spare); 4423 thresholds->spare = thresholds->primary; 4424 4425 rcu_assign_pointer(thresholds->primary, new); 4426 4427 /* To be sure that nobody uses thresholds */ 4428 synchronize_rcu(); 4429 4430 unlock: 4431 mutex_unlock(&memcg->thresholds_lock); 4432 4433 return ret; 4434 } 4435 4436 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4437 struct cftype *cft, struct eventfd_ctx *eventfd) 4438 { 4439 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4440 struct mem_cgroup_thresholds *thresholds; 4441 struct mem_cgroup_threshold_ary *new; 4442 int type = MEMFILE_TYPE(cft->private); 4443 u64 usage; 4444 int i, j, size; 4445 4446 mutex_lock(&memcg->thresholds_lock); 4447 if (type == _MEM) 4448 thresholds = &memcg->thresholds; 4449 else if (type == _MEMSWAP) 4450 thresholds = &memcg->memsw_thresholds; 4451 else 4452 BUG(); 4453 4454 if (!thresholds->primary) 4455 goto unlock; 4456 4457 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4458 4459 /* Check if a threshold crossed before removing */ 4460 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4461 4462 /* Calculate new number of threshold */ 4463 size = 0; 4464 for (i = 0; i < thresholds->primary->size; i++) { 4465 if (thresholds->primary->entries[i].eventfd != eventfd) 4466 size++; 4467 } 4468 4469 new = thresholds->spare; 4470 4471 /* Set thresholds array to NULL if we don't have thresholds */ 4472 if (!size) { 4473 kfree(new); 4474 new = NULL; 4475 goto swap_buffers; 4476 } 4477 4478 new->size = size; 4479 4480 /* Copy thresholds and find current threshold */ 4481 new->current_threshold = -1; 4482 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4483 if (thresholds->primary->entries[i].eventfd == eventfd) 4484 continue; 4485 4486 new->entries[j] = thresholds->primary->entries[i]; 4487 if (new->entries[j].threshold <= usage) { 4488 /* 4489 * new->current_threshold will not be used 4490 * until rcu_assign_pointer(), so it's safe to increment 4491 * it here. 4492 */ 4493 ++new->current_threshold; 4494 } 4495 j++; 4496 } 4497 4498 swap_buffers: 4499 /* Swap primary and spare array */ 4500 thresholds->spare = thresholds->primary; 4501 /* If all events are unregistered, free the spare array */ 4502 if (!new) { 4503 kfree(thresholds->spare); 4504 thresholds->spare = NULL; 4505 } 4506 4507 rcu_assign_pointer(thresholds->primary, new); 4508 4509 /* To be sure that nobody uses thresholds */ 4510 synchronize_rcu(); 4511 unlock: 4512 mutex_unlock(&memcg->thresholds_lock); 4513 } 4514 4515 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4516 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4517 { 4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4519 struct mem_cgroup_eventfd_list *event; 4520 int type = MEMFILE_TYPE(cft->private); 4521 4522 BUG_ON(type != _OOM_TYPE); 4523 event = kmalloc(sizeof(*event), GFP_KERNEL); 4524 if (!event) 4525 return -ENOMEM; 4526 4527 spin_lock(&memcg_oom_lock); 4528 4529 event->eventfd = eventfd; 4530 list_add(&event->list, &memcg->oom_notify); 4531 4532 /* already in OOM ? */ 4533 if (atomic_read(&memcg->under_oom)) 4534 eventfd_signal(eventfd, 1); 4535 spin_unlock(&memcg_oom_lock); 4536 4537 return 0; 4538 } 4539 4540 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4541 struct cftype *cft, struct eventfd_ctx *eventfd) 4542 { 4543 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4544 struct mem_cgroup_eventfd_list *ev, *tmp; 4545 int type = MEMFILE_TYPE(cft->private); 4546 4547 BUG_ON(type != _OOM_TYPE); 4548 4549 spin_lock(&memcg_oom_lock); 4550 4551 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4552 if (ev->eventfd == eventfd) { 4553 list_del(&ev->list); 4554 kfree(ev); 4555 } 4556 } 4557 4558 spin_unlock(&memcg_oom_lock); 4559 } 4560 4561 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4562 struct cftype *cft, struct cgroup_map_cb *cb) 4563 { 4564 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4565 4566 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4567 4568 if (atomic_read(&memcg->under_oom)) 4569 cb->fill(cb, "under_oom", 1); 4570 else 4571 cb->fill(cb, "under_oom", 0); 4572 return 0; 4573 } 4574 4575 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4576 struct cftype *cft, u64 val) 4577 { 4578 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4579 struct mem_cgroup *parent; 4580 4581 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4582 if (!cgrp->parent || !((val == 0) || (val == 1))) 4583 return -EINVAL; 4584 4585 parent = mem_cgroup_from_cont(cgrp->parent); 4586 4587 cgroup_lock(); 4588 /* oom-kill-disable is a flag for subhierarchy. */ 4589 if ((parent->use_hierarchy) || 4590 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4591 cgroup_unlock(); 4592 return -EINVAL; 4593 } 4594 memcg->oom_kill_disable = val; 4595 if (!val) 4596 memcg_oom_recover(memcg); 4597 cgroup_unlock(); 4598 return 0; 4599 } 4600 4601 #ifdef CONFIG_MEMCG_KMEM 4602 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4603 { 4604 return mem_cgroup_sockets_init(memcg, ss); 4605 }; 4606 4607 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4608 { 4609 mem_cgroup_sockets_destroy(memcg); 4610 } 4611 #else 4612 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4613 { 4614 return 0; 4615 } 4616 4617 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4618 { 4619 } 4620 #endif 4621 4622 static struct cftype mem_cgroup_files[] = { 4623 { 4624 .name = "usage_in_bytes", 4625 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4626 .read = mem_cgroup_read, 4627 .register_event = mem_cgroup_usage_register_event, 4628 .unregister_event = mem_cgroup_usage_unregister_event, 4629 }, 4630 { 4631 .name = "max_usage_in_bytes", 4632 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4633 .trigger = mem_cgroup_reset, 4634 .read = mem_cgroup_read, 4635 }, 4636 { 4637 .name = "limit_in_bytes", 4638 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4639 .write_string = mem_cgroup_write, 4640 .read = mem_cgroup_read, 4641 }, 4642 { 4643 .name = "soft_limit_in_bytes", 4644 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4645 .write_string = mem_cgroup_write, 4646 .read = mem_cgroup_read, 4647 }, 4648 { 4649 .name = "failcnt", 4650 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4651 .trigger = mem_cgroup_reset, 4652 .read = mem_cgroup_read, 4653 }, 4654 { 4655 .name = "stat", 4656 .read_seq_string = memcg_stat_show, 4657 }, 4658 { 4659 .name = "force_empty", 4660 .trigger = mem_cgroup_force_empty_write, 4661 }, 4662 { 4663 .name = "use_hierarchy", 4664 .write_u64 = mem_cgroup_hierarchy_write, 4665 .read_u64 = mem_cgroup_hierarchy_read, 4666 }, 4667 { 4668 .name = "swappiness", 4669 .read_u64 = mem_cgroup_swappiness_read, 4670 .write_u64 = mem_cgroup_swappiness_write, 4671 }, 4672 { 4673 .name = "move_charge_at_immigrate", 4674 .read_u64 = mem_cgroup_move_charge_read, 4675 .write_u64 = mem_cgroup_move_charge_write, 4676 }, 4677 { 4678 .name = "oom_control", 4679 .read_map = mem_cgroup_oom_control_read, 4680 .write_u64 = mem_cgroup_oom_control_write, 4681 .register_event = mem_cgroup_oom_register_event, 4682 .unregister_event = mem_cgroup_oom_unregister_event, 4683 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4684 }, 4685 #ifdef CONFIG_NUMA 4686 { 4687 .name = "numa_stat", 4688 .read_seq_string = memcg_numa_stat_show, 4689 }, 4690 #endif 4691 #ifdef CONFIG_MEMCG_SWAP 4692 { 4693 .name = "memsw.usage_in_bytes", 4694 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4695 .read = mem_cgroup_read, 4696 .register_event = mem_cgroup_usage_register_event, 4697 .unregister_event = mem_cgroup_usage_unregister_event, 4698 }, 4699 { 4700 .name = "memsw.max_usage_in_bytes", 4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4702 .trigger = mem_cgroup_reset, 4703 .read = mem_cgroup_read, 4704 }, 4705 { 4706 .name = "memsw.limit_in_bytes", 4707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4708 .write_string = mem_cgroup_write, 4709 .read = mem_cgroup_read, 4710 }, 4711 { 4712 .name = "memsw.failcnt", 4713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4714 .trigger = mem_cgroup_reset, 4715 .read = mem_cgroup_read, 4716 }, 4717 #endif 4718 { }, /* terminate */ 4719 }; 4720 4721 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4722 { 4723 struct mem_cgroup_per_node *pn; 4724 struct mem_cgroup_per_zone *mz; 4725 int zone, tmp = node; 4726 /* 4727 * This routine is called against possible nodes. 4728 * But it's BUG to call kmalloc() against offline node. 4729 * 4730 * TODO: this routine can waste much memory for nodes which will 4731 * never be onlined. It's better to use memory hotplug callback 4732 * function. 4733 */ 4734 if (!node_state(node, N_NORMAL_MEMORY)) 4735 tmp = -1; 4736 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4737 if (!pn) 4738 return 1; 4739 4740 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4741 mz = &pn->zoneinfo[zone]; 4742 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); 4743 mz->usage_in_excess = 0; 4744 mz->on_tree = false; 4745 mz->memcg = memcg; 4746 } 4747 memcg->info.nodeinfo[node] = pn; 4748 return 0; 4749 } 4750 4751 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4752 { 4753 kfree(memcg->info.nodeinfo[node]); 4754 } 4755 4756 static struct mem_cgroup *mem_cgroup_alloc(void) 4757 { 4758 struct mem_cgroup *memcg; 4759 int size = sizeof(struct mem_cgroup); 4760 4761 /* Can be very big if MAX_NUMNODES is very big */ 4762 if (size < PAGE_SIZE) 4763 memcg = kzalloc(size, GFP_KERNEL); 4764 else 4765 memcg = vzalloc(size); 4766 4767 if (!memcg) 4768 return NULL; 4769 4770 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4771 if (!memcg->stat) 4772 goto out_free; 4773 spin_lock_init(&memcg->pcp_counter_lock); 4774 return memcg; 4775 4776 out_free: 4777 if (size < PAGE_SIZE) 4778 kfree(memcg); 4779 else 4780 vfree(memcg); 4781 return NULL; 4782 } 4783 4784 /* 4785 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4786 * but in process context. The work_freeing structure is overlaid 4787 * on the rcu_freeing structure, which itself is overlaid on memsw. 4788 */ 4789 static void free_work(struct work_struct *work) 4790 { 4791 struct mem_cgroup *memcg; 4792 int size = sizeof(struct mem_cgroup); 4793 4794 memcg = container_of(work, struct mem_cgroup, work_freeing); 4795 /* 4796 * We need to make sure that (at least for now), the jump label 4797 * destruction code runs outside of the cgroup lock. This is because 4798 * get_online_cpus(), which is called from the static_branch update, 4799 * can't be called inside the cgroup_lock. cpusets are the ones 4800 * enforcing this dependency, so if they ever change, we might as well. 4801 * 4802 * schedule_work() will guarantee this happens. Be careful if you need 4803 * to move this code around, and make sure it is outside 4804 * the cgroup_lock. 4805 */ 4806 disarm_sock_keys(memcg); 4807 if (size < PAGE_SIZE) 4808 kfree(memcg); 4809 else 4810 vfree(memcg); 4811 } 4812 4813 static void free_rcu(struct rcu_head *rcu_head) 4814 { 4815 struct mem_cgroup *memcg; 4816 4817 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4818 INIT_WORK(&memcg->work_freeing, free_work); 4819 schedule_work(&memcg->work_freeing); 4820 } 4821 4822 /* 4823 * At destroying mem_cgroup, references from swap_cgroup can remain. 4824 * (scanning all at force_empty is too costly...) 4825 * 4826 * Instead of clearing all references at force_empty, we remember 4827 * the number of reference from swap_cgroup and free mem_cgroup when 4828 * it goes down to 0. 4829 * 4830 * Removal of cgroup itself succeeds regardless of refs from swap. 4831 */ 4832 4833 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4834 { 4835 int node; 4836 4837 mem_cgroup_remove_from_trees(memcg); 4838 free_css_id(&mem_cgroup_subsys, &memcg->css); 4839 4840 for_each_node(node) 4841 free_mem_cgroup_per_zone_info(memcg, node); 4842 4843 free_percpu(memcg->stat); 4844 call_rcu(&memcg->rcu_freeing, free_rcu); 4845 } 4846 4847 static void mem_cgroup_get(struct mem_cgroup *memcg) 4848 { 4849 atomic_inc(&memcg->refcnt); 4850 } 4851 4852 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4853 { 4854 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4855 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4856 __mem_cgroup_free(memcg); 4857 if (parent) 4858 mem_cgroup_put(parent); 4859 } 4860 } 4861 4862 static void mem_cgroup_put(struct mem_cgroup *memcg) 4863 { 4864 __mem_cgroup_put(memcg, 1); 4865 } 4866 4867 /* 4868 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4869 */ 4870 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4871 { 4872 if (!memcg->res.parent) 4873 return NULL; 4874 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4875 } 4876 EXPORT_SYMBOL(parent_mem_cgroup); 4877 4878 #ifdef CONFIG_MEMCG_SWAP 4879 static void __init enable_swap_cgroup(void) 4880 { 4881 if (!mem_cgroup_disabled() && really_do_swap_account) 4882 do_swap_account = 1; 4883 } 4884 #else 4885 static void __init enable_swap_cgroup(void) 4886 { 4887 } 4888 #endif 4889 4890 static int mem_cgroup_soft_limit_tree_init(void) 4891 { 4892 struct mem_cgroup_tree_per_node *rtpn; 4893 struct mem_cgroup_tree_per_zone *rtpz; 4894 int tmp, node, zone; 4895 4896 for_each_node(node) { 4897 tmp = node; 4898 if (!node_state(node, N_NORMAL_MEMORY)) 4899 tmp = -1; 4900 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4901 if (!rtpn) 4902 goto err_cleanup; 4903 4904 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4905 4906 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4907 rtpz = &rtpn->rb_tree_per_zone[zone]; 4908 rtpz->rb_root = RB_ROOT; 4909 spin_lock_init(&rtpz->lock); 4910 } 4911 } 4912 return 0; 4913 4914 err_cleanup: 4915 for_each_node(node) { 4916 if (!soft_limit_tree.rb_tree_per_node[node]) 4917 break; 4918 kfree(soft_limit_tree.rb_tree_per_node[node]); 4919 soft_limit_tree.rb_tree_per_node[node] = NULL; 4920 } 4921 return 1; 4922 4923 } 4924 4925 static struct cgroup_subsys_state * __ref 4926 mem_cgroup_create(struct cgroup *cont) 4927 { 4928 struct mem_cgroup *memcg, *parent; 4929 long error = -ENOMEM; 4930 int node; 4931 4932 memcg = mem_cgroup_alloc(); 4933 if (!memcg) 4934 return ERR_PTR(error); 4935 4936 for_each_node(node) 4937 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4938 goto free_out; 4939 4940 /* root ? */ 4941 if (cont->parent == NULL) { 4942 int cpu; 4943 enable_swap_cgroup(); 4944 parent = NULL; 4945 if (mem_cgroup_soft_limit_tree_init()) 4946 goto free_out; 4947 root_mem_cgroup = memcg; 4948 for_each_possible_cpu(cpu) { 4949 struct memcg_stock_pcp *stock = 4950 &per_cpu(memcg_stock, cpu); 4951 INIT_WORK(&stock->work, drain_local_stock); 4952 } 4953 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4954 } else { 4955 parent = mem_cgroup_from_cont(cont->parent); 4956 memcg->use_hierarchy = parent->use_hierarchy; 4957 memcg->oom_kill_disable = parent->oom_kill_disable; 4958 } 4959 4960 if (parent && parent->use_hierarchy) { 4961 res_counter_init(&memcg->res, &parent->res); 4962 res_counter_init(&memcg->memsw, &parent->memsw); 4963 /* 4964 * We increment refcnt of the parent to ensure that we can 4965 * safely access it on res_counter_charge/uncharge. 4966 * This refcnt will be decremented when freeing this 4967 * mem_cgroup(see mem_cgroup_put). 4968 */ 4969 mem_cgroup_get(parent); 4970 } else { 4971 res_counter_init(&memcg->res, NULL); 4972 res_counter_init(&memcg->memsw, NULL); 4973 } 4974 memcg->last_scanned_node = MAX_NUMNODES; 4975 INIT_LIST_HEAD(&memcg->oom_notify); 4976 4977 if (parent) 4978 memcg->swappiness = mem_cgroup_swappiness(parent); 4979 atomic_set(&memcg->refcnt, 1); 4980 memcg->move_charge_at_immigrate = 0; 4981 mutex_init(&memcg->thresholds_lock); 4982 spin_lock_init(&memcg->move_lock); 4983 4984 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 4985 if (error) { 4986 /* 4987 * We call put now because our (and parent's) refcnts 4988 * are already in place. mem_cgroup_put() will internally 4989 * call __mem_cgroup_free, so return directly 4990 */ 4991 mem_cgroup_put(memcg); 4992 return ERR_PTR(error); 4993 } 4994 return &memcg->css; 4995 free_out: 4996 __mem_cgroup_free(memcg); 4997 return ERR_PTR(error); 4998 } 4999 5000 static int mem_cgroup_pre_destroy(struct cgroup *cont) 5001 { 5002 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5003 5004 return mem_cgroup_force_empty(memcg, false); 5005 } 5006 5007 static void mem_cgroup_destroy(struct cgroup *cont) 5008 { 5009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5010 5011 kmem_cgroup_destroy(memcg); 5012 5013 mem_cgroup_put(memcg); 5014 } 5015 5016 #ifdef CONFIG_MMU 5017 /* Handlers for move charge at task migration. */ 5018 #define PRECHARGE_COUNT_AT_ONCE 256 5019 static int mem_cgroup_do_precharge(unsigned long count) 5020 { 5021 int ret = 0; 5022 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5023 struct mem_cgroup *memcg = mc.to; 5024 5025 if (mem_cgroup_is_root(memcg)) { 5026 mc.precharge += count; 5027 /* we don't need css_get for root */ 5028 return ret; 5029 } 5030 /* try to charge at once */ 5031 if (count > 1) { 5032 struct res_counter *dummy; 5033 /* 5034 * "memcg" cannot be under rmdir() because we've already checked 5035 * by cgroup_lock_live_cgroup() that it is not removed and we 5036 * are still under the same cgroup_mutex. So we can postpone 5037 * css_get(). 5038 */ 5039 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5040 goto one_by_one; 5041 if (do_swap_account && res_counter_charge(&memcg->memsw, 5042 PAGE_SIZE * count, &dummy)) { 5043 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5044 goto one_by_one; 5045 } 5046 mc.precharge += count; 5047 return ret; 5048 } 5049 one_by_one: 5050 /* fall back to one by one charge */ 5051 while (count--) { 5052 if (signal_pending(current)) { 5053 ret = -EINTR; 5054 break; 5055 } 5056 if (!batch_count--) { 5057 batch_count = PRECHARGE_COUNT_AT_ONCE; 5058 cond_resched(); 5059 } 5060 ret = __mem_cgroup_try_charge(NULL, 5061 GFP_KERNEL, 1, &memcg, false); 5062 if (ret) 5063 /* mem_cgroup_clear_mc() will do uncharge later */ 5064 return ret; 5065 mc.precharge++; 5066 } 5067 return ret; 5068 } 5069 5070 /** 5071 * get_mctgt_type - get target type of moving charge 5072 * @vma: the vma the pte to be checked belongs 5073 * @addr: the address corresponding to the pte to be checked 5074 * @ptent: the pte to be checked 5075 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5076 * 5077 * Returns 5078 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5079 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5080 * move charge. if @target is not NULL, the page is stored in target->page 5081 * with extra refcnt got(Callers should handle it). 5082 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5083 * target for charge migration. if @target is not NULL, the entry is stored 5084 * in target->ent. 5085 * 5086 * Called with pte lock held. 5087 */ 5088 union mc_target { 5089 struct page *page; 5090 swp_entry_t ent; 5091 }; 5092 5093 enum mc_target_type { 5094 MC_TARGET_NONE = 0, 5095 MC_TARGET_PAGE, 5096 MC_TARGET_SWAP, 5097 }; 5098 5099 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5100 unsigned long addr, pte_t ptent) 5101 { 5102 struct page *page = vm_normal_page(vma, addr, ptent); 5103 5104 if (!page || !page_mapped(page)) 5105 return NULL; 5106 if (PageAnon(page)) { 5107 /* we don't move shared anon */ 5108 if (!move_anon()) 5109 return NULL; 5110 } else if (!move_file()) 5111 /* we ignore mapcount for file pages */ 5112 return NULL; 5113 if (!get_page_unless_zero(page)) 5114 return NULL; 5115 5116 return page; 5117 } 5118 5119 #ifdef CONFIG_SWAP 5120 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5121 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5122 { 5123 struct page *page = NULL; 5124 swp_entry_t ent = pte_to_swp_entry(ptent); 5125 5126 if (!move_anon() || non_swap_entry(ent)) 5127 return NULL; 5128 /* 5129 * Because lookup_swap_cache() updates some statistics counter, 5130 * we call find_get_page() with swapper_space directly. 5131 */ 5132 page = find_get_page(&swapper_space, ent.val); 5133 if (do_swap_account) 5134 entry->val = ent.val; 5135 5136 return page; 5137 } 5138 #else 5139 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5140 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5141 { 5142 return NULL; 5143 } 5144 #endif 5145 5146 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5147 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5148 { 5149 struct page *page = NULL; 5150 struct address_space *mapping; 5151 pgoff_t pgoff; 5152 5153 if (!vma->vm_file) /* anonymous vma */ 5154 return NULL; 5155 if (!move_file()) 5156 return NULL; 5157 5158 mapping = vma->vm_file->f_mapping; 5159 if (pte_none(ptent)) 5160 pgoff = linear_page_index(vma, addr); 5161 else /* pte_file(ptent) is true */ 5162 pgoff = pte_to_pgoff(ptent); 5163 5164 /* page is moved even if it's not RSS of this task(page-faulted). */ 5165 page = find_get_page(mapping, pgoff); 5166 5167 #ifdef CONFIG_SWAP 5168 /* shmem/tmpfs may report page out on swap: account for that too. */ 5169 if (radix_tree_exceptional_entry(page)) { 5170 swp_entry_t swap = radix_to_swp_entry(page); 5171 if (do_swap_account) 5172 *entry = swap; 5173 page = find_get_page(&swapper_space, swap.val); 5174 } 5175 #endif 5176 return page; 5177 } 5178 5179 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5180 unsigned long addr, pte_t ptent, union mc_target *target) 5181 { 5182 struct page *page = NULL; 5183 struct page_cgroup *pc; 5184 enum mc_target_type ret = MC_TARGET_NONE; 5185 swp_entry_t ent = { .val = 0 }; 5186 5187 if (pte_present(ptent)) 5188 page = mc_handle_present_pte(vma, addr, ptent); 5189 else if (is_swap_pte(ptent)) 5190 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5191 else if (pte_none(ptent) || pte_file(ptent)) 5192 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5193 5194 if (!page && !ent.val) 5195 return ret; 5196 if (page) { 5197 pc = lookup_page_cgroup(page); 5198 /* 5199 * Do only loose check w/o page_cgroup lock. 5200 * mem_cgroup_move_account() checks the pc is valid or not under 5201 * the lock. 5202 */ 5203 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5204 ret = MC_TARGET_PAGE; 5205 if (target) 5206 target->page = page; 5207 } 5208 if (!ret || !target) 5209 put_page(page); 5210 } 5211 /* There is a swap entry and a page doesn't exist or isn't charged */ 5212 if (ent.val && !ret && 5213 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5214 ret = MC_TARGET_SWAP; 5215 if (target) 5216 target->ent = ent; 5217 } 5218 return ret; 5219 } 5220 5221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5222 /* 5223 * We don't consider swapping or file mapped pages because THP does not 5224 * support them for now. 5225 * Caller should make sure that pmd_trans_huge(pmd) is true. 5226 */ 5227 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5228 unsigned long addr, pmd_t pmd, union mc_target *target) 5229 { 5230 struct page *page = NULL; 5231 struct page_cgroup *pc; 5232 enum mc_target_type ret = MC_TARGET_NONE; 5233 5234 page = pmd_page(pmd); 5235 VM_BUG_ON(!page || !PageHead(page)); 5236 if (!move_anon()) 5237 return ret; 5238 pc = lookup_page_cgroup(page); 5239 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5240 ret = MC_TARGET_PAGE; 5241 if (target) { 5242 get_page(page); 5243 target->page = page; 5244 } 5245 } 5246 return ret; 5247 } 5248 #else 5249 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5250 unsigned long addr, pmd_t pmd, union mc_target *target) 5251 { 5252 return MC_TARGET_NONE; 5253 } 5254 #endif 5255 5256 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5257 unsigned long addr, unsigned long end, 5258 struct mm_walk *walk) 5259 { 5260 struct vm_area_struct *vma = walk->private; 5261 pte_t *pte; 5262 spinlock_t *ptl; 5263 5264 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5265 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5266 mc.precharge += HPAGE_PMD_NR; 5267 spin_unlock(&vma->vm_mm->page_table_lock); 5268 return 0; 5269 } 5270 5271 if (pmd_trans_unstable(pmd)) 5272 return 0; 5273 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5274 for (; addr != end; pte++, addr += PAGE_SIZE) 5275 if (get_mctgt_type(vma, addr, *pte, NULL)) 5276 mc.precharge++; /* increment precharge temporarily */ 5277 pte_unmap_unlock(pte - 1, ptl); 5278 cond_resched(); 5279 5280 return 0; 5281 } 5282 5283 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5284 { 5285 unsigned long precharge; 5286 struct vm_area_struct *vma; 5287 5288 down_read(&mm->mmap_sem); 5289 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5290 struct mm_walk mem_cgroup_count_precharge_walk = { 5291 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5292 .mm = mm, 5293 .private = vma, 5294 }; 5295 if (is_vm_hugetlb_page(vma)) 5296 continue; 5297 walk_page_range(vma->vm_start, vma->vm_end, 5298 &mem_cgroup_count_precharge_walk); 5299 } 5300 up_read(&mm->mmap_sem); 5301 5302 precharge = mc.precharge; 5303 mc.precharge = 0; 5304 5305 return precharge; 5306 } 5307 5308 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5309 { 5310 unsigned long precharge = mem_cgroup_count_precharge(mm); 5311 5312 VM_BUG_ON(mc.moving_task); 5313 mc.moving_task = current; 5314 return mem_cgroup_do_precharge(precharge); 5315 } 5316 5317 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5318 static void __mem_cgroup_clear_mc(void) 5319 { 5320 struct mem_cgroup *from = mc.from; 5321 struct mem_cgroup *to = mc.to; 5322 5323 /* we must uncharge all the leftover precharges from mc.to */ 5324 if (mc.precharge) { 5325 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5326 mc.precharge = 0; 5327 } 5328 /* 5329 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5330 * we must uncharge here. 5331 */ 5332 if (mc.moved_charge) { 5333 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5334 mc.moved_charge = 0; 5335 } 5336 /* we must fixup refcnts and charges */ 5337 if (mc.moved_swap) { 5338 /* uncharge swap account from the old cgroup */ 5339 if (!mem_cgroup_is_root(mc.from)) 5340 res_counter_uncharge(&mc.from->memsw, 5341 PAGE_SIZE * mc.moved_swap); 5342 __mem_cgroup_put(mc.from, mc.moved_swap); 5343 5344 if (!mem_cgroup_is_root(mc.to)) { 5345 /* 5346 * we charged both to->res and to->memsw, so we should 5347 * uncharge to->res. 5348 */ 5349 res_counter_uncharge(&mc.to->res, 5350 PAGE_SIZE * mc.moved_swap); 5351 } 5352 /* we've already done mem_cgroup_get(mc.to) */ 5353 mc.moved_swap = 0; 5354 } 5355 memcg_oom_recover(from); 5356 memcg_oom_recover(to); 5357 wake_up_all(&mc.waitq); 5358 } 5359 5360 static void mem_cgroup_clear_mc(void) 5361 { 5362 struct mem_cgroup *from = mc.from; 5363 5364 /* 5365 * we must clear moving_task before waking up waiters at the end of 5366 * task migration. 5367 */ 5368 mc.moving_task = NULL; 5369 __mem_cgroup_clear_mc(); 5370 spin_lock(&mc.lock); 5371 mc.from = NULL; 5372 mc.to = NULL; 5373 spin_unlock(&mc.lock); 5374 mem_cgroup_end_move(from); 5375 } 5376 5377 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5378 struct cgroup_taskset *tset) 5379 { 5380 struct task_struct *p = cgroup_taskset_first(tset); 5381 int ret = 0; 5382 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5383 5384 if (memcg->move_charge_at_immigrate) { 5385 struct mm_struct *mm; 5386 struct mem_cgroup *from = mem_cgroup_from_task(p); 5387 5388 VM_BUG_ON(from == memcg); 5389 5390 mm = get_task_mm(p); 5391 if (!mm) 5392 return 0; 5393 /* We move charges only when we move a owner of the mm */ 5394 if (mm->owner == p) { 5395 VM_BUG_ON(mc.from); 5396 VM_BUG_ON(mc.to); 5397 VM_BUG_ON(mc.precharge); 5398 VM_BUG_ON(mc.moved_charge); 5399 VM_BUG_ON(mc.moved_swap); 5400 mem_cgroup_start_move(from); 5401 spin_lock(&mc.lock); 5402 mc.from = from; 5403 mc.to = memcg; 5404 spin_unlock(&mc.lock); 5405 /* We set mc.moving_task later */ 5406 5407 ret = mem_cgroup_precharge_mc(mm); 5408 if (ret) 5409 mem_cgroup_clear_mc(); 5410 } 5411 mmput(mm); 5412 } 5413 return ret; 5414 } 5415 5416 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5417 struct cgroup_taskset *tset) 5418 { 5419 mem_cgroup_clear_mc(); 5420 } 5421 5422 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5423 unsigned long addr, unsigned long end, 5424 struct mm_walk *walk) 5425 { 5426 int ret = 0; 5427 struct vm_area_struct *vma = walk->private; 5428 pte_t *pte; 5429 spinlock_t *ptl; 5430 enum mc_target_type target_type; 5431 union mc_target target; 5432 struct page *page; 5433 struct page_cgroup *pc; 5434 5435 /* 5436 * We don't take compound_lock() here but no race with splitting thp 5437 * happens because: 5438 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5439 * under splitting, which means there's no concurrent thp split, 5440 * - if another thread runs into split_huge_page() just after we 5441 * entered this if-block, the thread must wait for page table lock 5442 * to be unlocked in __split_huge_page_splitting(), where the main 5443 * part of thp split is not executed yet. 5444 */ 5445 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5446 if (mc.precharge < HPAGE_PMD_NR) { 5447 spin_unlock(&vma->vm_mm->page_table_lock); 5448 return 0; 5449 } 5450 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5451 if (target_type == MC_TARGET_PAGE) { 5452 page = target.page; 5453 if (!isolate_lru_page(page)) { 5454 pc = lookup_page_cgroup(page); 5455 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5456 pc, mc.from, mc.to)) { 5457 mc.precharge -= HPAGE_PMD_NR; 5458 mc.moved_charge += HPAGE_PMD_NR; 5459 } 5460 putback_lru_page(page); 5461 } 5462 put_page(page); 5463 } 5464 spin_unlock(&vma->vm_mm->page_table_lock); 5465 return 0; 5466 } 5467 5468 if (pmd_trans_unstable(pmd)) 5469 return 0; 5470 retry: 5471 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5472 for (; addr != end; addr += PAGE_SIZE) { 5473 pte_t ptent = *(pte++); 5474 swp_entry_t ent; 5475 5476 if (!mc.precharge) 5477 break; 5478 5479 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5480 case MC_TARGET_PAGE: 5481 page = target.page; 5482 if (isolate_lru_page(page)) 5483 goto put; 5484 pc = lookup_page_cgroup(page); 5485 if (!mem_cgroup_move_account(page, 1, pc, 5486 mc.from, mc.to)) { 5487 mc.precharge--; 5488 /* we uncharge from mc.from later. */ 5489 mc.moved_charge++; 5490 } 5491 putback_lru_page(page); 5492 put: /* get_mctgt_type() gets the page */ 5493 put_page(page); 5494 break; 5495 case MC_TARGET_SWAP: 5496 ent = target.ent; 5497 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5498 mc.precharge--; 5499 /* we fixup refcnts and charges later. */ 5500 mc.moved_swap++; 5501 } 5502 break; 5503 default: 5504 break; 5505 } 5506 } 5507 pte_unmap_unlock(pte - 1, ptl); 5508 cond_resched(); 5509 5510 if (addr != end) { 5511 /* 5512 * We have consumed all precharges we got in can_attach(). 5513 * We try charge one by one, but don't do any additional 5514 * charges to mc.to if we have failed in charge once in attach() 5515 * phase. 5516 */ 5517 ret = mem_cgroup_do_precharge(1); 5518 if (!ret) 5519 goto retry; 5520 } 5521 5522 return ret; 5523 } 5524 5525 static void mem_cgroup_move_charge(struct mm_struct *mm) 5526 { 5527 struct vm_area_struct *vma; 5528 5529 lru_add_drain_all(); 5530 retry: 5531 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5532 /* 5533 * Someone who are holding the mmap_sem might be waiting in 5534 * waitq. So we cancel all extra charges, wake up all waiters, 5535 * and retry. Because we cancel precharges, we might not be able 5536 * to move enough charges, but moving charge is a best-effort 5537 * feature anyway, so it wouldn't be a big problem. 5538 */ 5539 __mem_cgroup_clear_mc(); 5540 cond_resched(); 5541 goto retry; 5542 } 5543 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5544 int ret; 5545 struct mm_walk mem_cgroup_move_charge_walk = { 5546 .pmd_entry = mem_cgroup_move_charge_pte_range, 5547 .mm = mm, 5548 .private = vma, 5549 }; 5550 if (is_vm_hugetlb_page(vma)) 5551 continue; 5552 ret = walk_page_range(vma->vm_start, vma->vm_end, 5553 &mem_cgroup_move_charge_walk); 5554 if (ret) 5555 /* 5556 * means we have consumed all precharges and failed in 5557 * doing additional charge. Just abandon here. 5558 */ 5559 break; 5560 } 5561 up_read(&mm->mmap_sem); 5562 } 5563 5564 static void mem_cgroup_move_task(struct cgroup *cont, 5565 struct cgroup_taskset *tset) 5566 { 5567 struct task_struct *p = cgroup_taskset_first(tset); 5568 struct mm_struct *mm = get_task_mm(p); 5569 5570 if (mm) { 5571 if (mc.to) 5572 mem_cgroup_move_charge(mm); 5573 mmput(mm); 5574 } 5575 if (mc.to) 5576 mem_cgroup_clear_mc(); 5577 } 5578 #else /* !CONFIG_MMU */ 5579 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5580 struct cgroup_taskset *tset) 5581 { 5582 return 0; 5583 } 5584 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5585 struct cgroup_taskset *tset) 5586 { 5587 } 5588 static void mem_cgroup_move_task(struct cgroup *cont, 5589 struct cgroup_taskset *tset) 5590 { 5591 } 5592 #endif 5593 5594 struct cgroup_subsys mem_cgroup_subsys = { 5595 .name = "memory", 5596 .subsys_id = mem_cgroup_subsys_id, 5597 .create = mem_cgroup_create, 5598 .pre_destroy = mem_cgroup_pre_destroy, 5599 .destroy = mem_cgroup_destroy, 5600 .can_attach = mem_cgroup_can_attach, 5601 .cancel_attach = mem_cgroup_cancel_attach, 5602 .attach = mem_cgroup_move_task, 5603 .base_cftypes = mem_cgroup_files, 5604 .early_init = 0, 5605 .use_id = 1, 5606 .__DEPRECATED_clear_css_refs = true, 5607 }; 5608 5609 #ifdef CONFIG_MEMCG_SWAP 5610 static int __init enable_swap_account(char *s) 5611 { 5612 /* consider enabled if no parameter or 1 is given */ 5613 if (!strcmp(s, "1")) 5614 really_do_swap_account = 1; 5615 else if (!strcmp(s, "0")) 5616 really_do_swap_account = 0; 5617 return 1; 5618 } 5619 __setup("swapaccount=", enable_swap_account); 5620 5621 #endif 5622