xref: /linux-5.15/mm/memcontrol.c (revision bdf4f4d2161a795b9323855a81a047bd68f16202)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		0
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_NSTATS,
92 };
93 
94 static const char * const mem_cgroup_stat_names[] = {
95 	"cache",
96 	"rss",
97 	"mapped_file",
98 	"swap",
99 };
100 
101 enum mem_cgroup_events_index {
102 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
103 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
105 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 	MEM_CGROUP_EVENTS_NSTATS,
107 };
108 
109 static const char * const mem_cgroup_events_names[] = {
110 	"pgpgin",
111 	"pgpgout",
112 	"pgfault",
113 	"pgmajfault",
114 };
115 
116 /*
117  * Per memcg event counter is incremented at every pagein/pageout. With THP,
118  * it will be incremated by the number of pages. This counter is used for
119  * for trigger some periodic events. This is straightforward and better
120  * than using jiffies etc. to handle periodic memcg event.
121  */
122 enum mem_cgroup_events_target {
123 	MEM_CGROUP_TARGET_THRESH,
124 	MEM_CGROUP_TARGET_SOFTLIMIT,
125 	MEM_CGROUP_TARGET_NUMAINFO,
126 	MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET	1024
131 
132 struct mem_cgroup_stat_cpu {
133 	long count[MEM_CGROUP_STAT_NSTATS];
134 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 	unsigned long nr_page_events;
136 	unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138 
139 struct mem_cgroup_reclaim_iter {
140 	/* css_id of the last scanned hierarchy member */
141 	int position;
142 	/* scan generation, increased every round-trip */
143 	unsigned int generation;
144 };
145 
146 /*
147  * per-zone information in memory controller.
148  */
149 struct mem_cgroup_per_zone {
150 	struct lruvec		lruvec;
151 	unsigned long		lru_size[NR_LRU_LISTS];
152 
153 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154 
155 	struct rb_node		tree_node;	/* RB tree node */
156 	unsigned long long	usage_in_excess;/* Set to the value by which */
157 						/* the soft limit is exceeded*/
158 	bool			on_tree;
159 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160 						/* use container_of	   */
161 };
162 
163 struct mem_cgroup_per_node {
164 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166 
167 struct mem_cgroup_lru_info {
168 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170 
171 /*
172  * Cgroups above their limits are maintained in a RB-Tree, independent of
173  * their hierarchy representation
174  */
175 
176 struct mem_cgroup_tree_per_zone {
177 	struct rb_root rb_root;
178 	spinlock_t lock;
179 };
180 
181 struct mem_cgroup_tree_per_node {
182 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184 
185 struct mem_cgroup_tree {
186 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188 
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190 
191 struct mem_cgroup_threshold {
192 	struct eventfd_ctx *eventfd;
193 	u64 threshold;
194 };
195 
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 	/* An array index points to threshold just below or equal to usage. */
199 	int current_threshold;
200 	/* Size of entries[] */
201 	unsigned int size;
202 	/* Array of thresholds */
203 	struct mem_cgroup_threshold entries[0];
204 };
205 
206 struct mem_cgroup_thresholds {
207 	/* Primary thresholds array */
208 	struct mem_cgroup_threshold_ary *primary;
209 	/*
210 	 * Spare threshold array.
211 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 	 * It must be able to store at least primary->size - 1 entries.
213 	 */
214 	struct mem_cgroup_threshold_ary *spare;
215 };
216 
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 	struct list_head list;
220 	struct eventfd_ctx *eventfd;
221 };
222 
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225 
226 /*
227  * The memory controller data structure. The memory controller controls both
228  * page cache and RSS per cgroup. We would eventually like to provide
229  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230  * to help the administrator determine what knobs to tune.
231  *
232  * TODO: Add a water mark for the memory controller. Reclaim will begin when
233  * we hit the water mark. May be even add a low water mark, such that
234  * no reclaim occurs from a cgroup at it's low water mark, this is
235  * a feature that will be implemented much later in the future.
236  */
237 struct mem_cgroup {
238 	struct cgroup_subsys_state css;
239 	/*
240 	 * the counter to account for memory usage
241 	 */
242 	struct res_counter res;
243 
244 	union {
245 		/*
246 		 * the counter to account for mem+swap usage.
247 		 */
248 		struct res_counter memsw;
249 
250 		/*
251 		 * rcu_freeing is used only when freeing struct mem_cgroup,
252 		 * so put it into a union to avoid wasting more memory.
253 		 * It must be disjoint from the css field.  It could be
254 		 * in a union with the res field, but res plays a much
255 		 * larger part in mem_cgroup life than memsw, and might
256 		 * be of interest, even at time of free, when debugging.
257 		 * So share rcu_head with the less interesting memsw.
258 		 */
259 		struct rcu_head rcu_freeing;
260 		/*
261 		 * We also need some space for a worker in deferred freeing.
262 		 * By the time we call it, rcu_freeing is no longer in use.
263 		 */
264 		struct work_struct work_freeing;
265 	};
266 
267 	/*
268 	 * Per cgroup active and inactive list, similar to the
269 	 * per zone LRU lists.
270 	 */
271 	struct mem_cgroup_lru_info info;
272 	int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 	nodemask_t	scan_nodes;
275 	atomic_t	numainfo_events;
276 	atomic_t	numainfo_updating;
277 #endif
278 	/*
279 	 * Should the accounting and control be hierarchical, per subtree?
280 	 */
281 	bool use_hierarchy;
282 
283 	bool		oom_lock;
284 	atomic_t	under_oom;
285 
286 	atomic_t	refcnt;
287 
288 	int	swappiness;
289 	/* OOM-Killer disable */
290 	int		oom_kill_disable;
291 
292 	/* set when res.limit == memsw.limit */
293 	bool		memsw_is_minimum;
294 
295 	/* protect arrays of thresholds */
296 	struct mutex thresholds_lock;
297 
298 	/* thresholds for memory usage. RCU-protected */
299 	struct mem_cgroup_thresholds thresholds;
300 
301 	/* thresholds for mem+swap usage. RCU-protected */
302 	struct mem_cgroup_thresholds memsw_thresholds;
303 
304 	/* For oom notifier event fd */
305 	struct list_head oom_notify;
306 
307 	/*
308 	 * Should we move charges of a task when a task is moved into this
309 	 * mem_cgroup ? And what type of charges should we move ?
310 	 */
311 	unsigned long 	move_charge_at_immigrate;
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t	moving_account;
316 	/* taken only while moving_account > 0 */
317 	spinlock_t	move_lock;
318 	/*
319 	 * percpu counter.
320 	 */
321 	struct mem_cgroup_stat_cpu __percpu *stat;
322 	/*
323 	 * used when a cpu is offlined or other synchronizations
324 	 * See mem_cgroup_read_stat().
325 	 */
326 	struct mem_cgroup_stat_cpu nocpu_base;
327 	spinlock_t pcp_counter_lock;
328 
329 #ifdef CONFIG_INET
330 	struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333 
334 /* Stuffs for move charges at task migration. */
335 /*
336  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337  * left-shifted bitmap of these types.
338  */
339 enum move_type {
340 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 	NR_MOVE_TYPE,
343 };
344 
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 	spinlock_t	  lock; /* for from, to */
348 	struct mem_cgroup *from;
349 	struct mem_cgroup *to;
350 	unsigned long precharge;
351 	unsigned long moved_charge;
352 	unsigned long moved_swap;
353 	struct task_struct *moving_task;	/* a task moving charges */
354 	wait_queue_head_t waitq;		/* a waitq for other context */
355 } mc = {
356 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359 
360 static bool move_anon(void)
361 {
362 	return test_bit(MOVE_CHARGE_TYPE_ANON,
363 					&mc.to->move_charge_at_immigrate);
364 }
365 
366 static bool move_file(void)
367 {
368 	return test_bit(MOVE_CHARGE_TYPE_FILE,
369 					&mc.to->move_charge_at_immigrate);
370 }
371 
372 /*
373  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374  * limit reclaim to prevent infinite loops, if they ever occur.
375  */
376 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
377 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378 
379 enum charge_type {
380 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 	MEM_CGROUP_CHARGE_TYPE_ANON,
382 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
383 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
384 	NR_CHARGE_TYPE,
385 };
386 
387 /* for encoding cft->private value on file */
388 #define _MEM			(0)
389 #define _MEMSWAP		(1)
390 #define _OOM_TYPE		(2)
391 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
392 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
393 #define MEMFILE_ATTR(val)	((val) & 0xffff)
394 /* Used for OOM nofiier */
395 #define OOM_CONTROL		(0)
396 
397 /*
398  * Reclaim flags for mem_cgroup_hierarchical_reclaim
399  */
400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
401 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
403 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404 
405 static void mem_cgroup_get(struct mem_cgroup *memcg);
406 static void mem_cgroup_put(struct mem_cgroup *memcg);
407 
408 /* Writing them here to avoid exposing memcg's inner layout */
409 #ifdef CONFIG_MEMCG_KMEM
410 #include <net/sock.h>
411 #include <net/ip.h>
412 
413 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
414 void sock_update_memcg(struct sock *sk)
415 {
416 	if (mem_cgroup_sockets_enabled) {
417 		struct mem_cgroup *memcg;
418 		struct cg_proto *cg_proto;
419 
420 		BUG_ON(!sk->sk_prot->proto_cgroup);
421 
422 		/* Socket cloning can throw us here with sk_cgrp already
423 		 * filled. It won't however, necessarily happen from
424 		 * process context. So the test for root memcg given
425 		 * the current task's memcg won't help us in this case.
426 		 *
427 		 * Respecting the original socket's memcg is a better
428 		 * decision in this case.
429 		 */
430 		if (sk->sk_cgrp) {
431 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
432 			mem_cgroup_get(sk->sk_cgrp->memcg);
433 			return;
434 		}
435 
436 		rcu_read_lock();
437 		memcg = mem_cgroup_from_task(current);
438 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
439 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
440 			mem_cgroup_get(memcg);
441 			sk->sk_cgrp = cg_proto;
442 		}
443 		rcu_read_unlock();
444 	}
445 }
446 EXPORT_SYMBOL(sock_update_memcg);
447 
448 void sock_release_memcg(struct sock *sk)
449 {
450 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
451 		struct mem_cgroup *memcg;
452 		WARN_ON(!sk->sk_cgrp->memcg);
453 		memcg = sk->sk_cgrp->memcg;
454 		mem_cgroup_put(memcg);
455 	}
456 }
457 
458 #ifdef CONFIG_INET
459 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460 {
461 	if (!memcg || mem_cgroup_is_root(memcg))
462 		return NULL;
463 
464 	return &memcg->tcp_mem.cg_proto;
465 }
466 EXPORT_SYMBOL(tcp_proto_cgroup);
467 #endif /* CONFIG_INET */
468 #endif /* CONFIG_MEMCG_KMEM */
469 
470 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
471 static void disarm_sock_keys(struct mem_cgroup *memcg)
472 {
473 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
474 		return;
475 	static_key_slow_dec(&memcg_socket_limit_enabled);
476 }
477 #else
478 static void disarm_sock_keys(struct mem_cgroup *memcg)
479 {
480 }
481 #endif
482 
483 static void drain_all_stock_async(struct mem_cgroup *memcg);
484 
485 static struct mem_cgroup_per_zone *
486 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
487 {
488 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
489 }
490 
491 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
492 {
493 	return &memcg->css;
494 }
495 
496 static struct mem_cgroup_per_zone *
497 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
498 {
499 	int nid = page_to_nid(page);
500 	int zid = page_zonenum(page);
501 
502 	return mem_cgroup_zoneinfo(memcg, nid, zid);
503 }
504 
505 static struct mem_cgroup_tree_per_zone *
506 soft_limit_tree_node_zone(int nid, int zid)
507 {
508 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
509 }
510 
511 static struct mem_cgroup_tree_per_zone *
512 soft_limit_tree_from_page(struct page *page)
513 {
514 	int nid = page_to_nid(page);
515 	int zid = page_zonenum(page);
516 
517 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
518 }
519 
520 static void
521 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
522 				struct mem_cgroup_per_zone *mz,
523 				struct mem_cgroup_tree_per_zone *mctz,
524 				unsigned long long new_usage_in_excess)
525 {
526 	struct rb_node **p = &mctz->rb_root.rb_node;
527 	struct rb_node *parent = NULL;
528 	struct mem_cgroup_per_zone *mz_node;
529 
530 	if (mz->on_tree)
531 		return;
532 
533 	mz->usage_in_excess = new_usage_in_excess;
534 	if (!mz->usage_in_excess)
535 		return;
536 	while (*p) {
537 		parent = *p;
538 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
539 					tree_node);
540 		if (mz->usage_in_excess < mz_node->usage_in_excess)
541 			p = &(*p)->rb_left;
542 		/*
543 		 * We can't avoid mem cgroups that are over their soft
544 		 * limit by the same amount
545 		 */
546 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 			p = &(*p)->rb_right;
548 	}
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void
555 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
556 				struct mem_cgroup_per_zone *mz,
557 				struct mem_cgroup_tree_per_zone *mctz)
558 {
559 	if (!mz->on_tree)
560 		return;
561 	rb_erase(&mz->tree_node, &mctz->rb_root);
562 	mz->on_tree = false;
563 }
564 
565 static void
566 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
567 				struct mem_cgroup_per_zone *mz,
568 				struct mem_cgroup_tree_per_zone *mctz)
569 {
570 	spin_lock(&mctz->lock);
571 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
572 	spin_unlock(&mctz->lock);
573 }
574 
575 
576 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
577 {
578 	unsigned long long excess;
579 	struct mem_cgroup_per_zone *mz;
580 	struct mem_cgroup_tree_per_zone *mctz;
581 	int nid = page_to_nid(page);
582 	int zid = page_zonenum(page);
583 	mctz = soft_limit_tree_from_page(page);
584 
585 	/*
586 	 * Necessary to update all ancestors when hierarchy is used.
587 	 * because their event counter is not touched.
588 	 */
589 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
590 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
591 		excess = res_counter_soft_limit_excess(&memcg->res);
592 		/*
593 		 * We have to update the tree if mz is on RB-tree or
594 		 * mem is over its softlimit.
595 		 */
596 		if (excess || mz->on_tree) {
597 			spin_lock(&mctz->lock);
598 			/* if on-tree, remove it */
599 			if (mz->on_tree)
600 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
601 			/*
602 			 * Insert again. mz->usage_in_excess will be updated.
603 			 * If excess is 0, no tree ops.
604 			 */
605 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
606 			spin_unlock(&mctz->lock);
607 		}
608 	}
609 }
610 
611 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
612 {
613 	int node, zone;
614 	struct mem_cgroup_per_zone *mz;
615 	struct mem_cgroup_tree_per_zone *mctz;
616 
617 	for_each_node(node) {
618 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
619 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
620 			mctz = soft_limit_tree_node_zone(node, zone);
621 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
622 		}
623 	}
624 }
625 
626 static struct mem_cgroup_per_zone *
627 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 	struct rb_node *rightmost = NULL;
630 	struct mem_cgroup_per_zone *mz;
631 
632 retry:
633 	mz = NULL;
634 	rightmost = rb_last(&mctz->rb_root);
635 	if (!rightmost)
636 		goto done;		/* Nothing to reclaim from */
637 
638 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
639 	/*
640 	 * Remove the node now but someone else can add it back,
641 	 * we will to add it back at the end of reclaim to its correct
642 	 * position in the tree.
643 	 */
644 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
645 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
646 		!css_tryget(&mz->memcg->css))
647 		goto retry;
648 done:
649 	return mz;
650 }
651 
652 static struct mem_cgroup_per_zone *
653 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
654 {
655 	struct mem_cgroup_per_zone *mz;
656 
657 	spin_lock(&mctz->lock);
658 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
659 	spin_unlock(&mctz->lock);
660 	return mz;
661 }
662 
663 /*
664  * Implementation Note: reading percpu statistics for memcg.
665  *
666  * Both of vmstat[] and percpu_counter has threshold and do periodic
667  * synchronization to implement "quick" read. There are trade-off between
668  * reading cost and precision of value. Then, we may have a chance to implement
669  * a periodic synchronizion of counter in memcg's counter.
670  *
671  * But this _read() function is used for user interface now. The user accounts
672  * memory usage by memory cgroup and he _always_ requires exact value because
673  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
674  * have to visit all online cpus and make sum. So, for now, unnecessary
675  * synchronization is not implemented. (just implemented for cpu hotplug)
676  *
677  * If there are kernel internal actions which can make use of some not-exact
678  * value, and reading all cpu value can be performance bottleneck in some
679  * common workload, threashold and synchonization as vmstat[] should be
680  * implemented.
681  */
682 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
683 				 enum mem_cgroup_stat_index idx)
684 {
685 	long val = 0;
686 	int cpu;
687 
688 	get_online_cpus();
689 	for_each_online_cpu(cpu)
690 		val += per_cpu(memcg->stat->count[idx], cpu);
691 #ifdef CONFIG_HOTPLUG_CPU
692 	spin_lock(&memcg->pcp_counter_lock);
693 	val += memcg->nocpu_base.count[idx];
694 	spin_unlock(&memcg->pcp_counter_lock);
695 #endif
696 	put_online_cpus();
697 	return val;
698 }
699 
700 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
701 					 bool charge)
702 {
703 	int val = (charge) ? 1 : -1;
704 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
705 }
706 
707 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
708 					    enum mem_cgroup_events_index idx)
709 {
710 	unsigned long val = 0;
711 	int cpu;
712 
713 	for_each_online_cpu(cpu)
714 		val += per_cpu(memcg->stat->events[idx], cpu);
715 #ifdef CONFIG_HOTPLUG_CPU
716 	spin_lock(&memcg->pcp_counter_lock);
717 	val += memcg->nocpu_base.events[idx];
718 	spin_unlock(&memcg->pcp_counter_lock);
719 #endif
720 	return val;
721 }
722 
723 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
724 					 bool anon, int nr_pages)
725 {
726 	preempt_disable();
727 
728 	/*
729 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
730 	 * counted as CACHE even if it's on ANON LRU.
731 	 */
732 	if (anon)
733 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
734 				nr_pages);
735 	else
736 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
737 				nr_pages);
738 
739 	/* pagein of a big page is an event. So, ignore page size */
740 	if (nr_pages > 0)
741 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
742 	else {
743 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
744 		nr_pages = -nr_pages; /* for event */
745 	}
746 
747 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
748 
749 	preempt_enable();
750 }
751 
752 unsigned long
753 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
754 {
755 	struct mem_cgroup_per_zone *mz;
756 
757 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
758 	return mz->lru_size[lru];
759 }
760 
761 static unsigned long
762 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
763 			unsigned int lru_mask)
764 {
765 	struct mem_cgroup_per_zone *mz;
766 	enum lru_list lru;
767 	unsigned long ret = 0;
768 
769 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
770 
771 	for_each_lru(lru) {
772 		if (BIT(lru) & lru_mask)
773 			ret += mz->lru_size[lru];
774 	}
775 	return ret;
776 }
777 
778 static unsigned long
779 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
780 			int nid, unsigned int lru_mask)
781 {
782 	u64 total = 0;
783 	int zid;
784 
785 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
786 		total += mem_cgroup_zone_nr_lru_pages(memcg,
787 						nid, zid, lru_mask);
788 
789 	return total;
790 }
791 
792 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
793 			unsigned int lru_mask)
794 {
795 	int nid;
796 	u64 total = 0;
797 
798 	for_each_node_state(nid, N_HIGH_MEMORY)
799 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
800 	return total;
801 }
802 
803 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
804 				       enum mem_cgroup_events_target target)
805 {
806 	unsigned long val, next;
807 
808 	val = __this_cpu_read(memcg->stat->nr_page_events);
809 	next = __this_cpu_read(memcg->stat->targets[target]);
810 	/* from time_after() in jiffies.h */
811 	if ((long)next - (long)val < 0) {
812 		switch (target) {
813 		case MEM_CGROUP_TARGET_THRESH:
814 			next = val + THRESHOLDS_EVENTS_TARGET;
815 			break;
816 		case MEM_CGROUP_TARGET_SOFTLIMIT:
817 			next = val + SOFTLIMIT_EVENTS_TARGET;
818 			break;
819 		case MEM_CGROUP_TARGET_NUMAINFO:
820 			next = val + NUMAINFO_EVENTS_TARGET;
821 			break;
822 		default:
823 			break;
824 		}
825 		__this_cpu_write(memcg->stat->targets[target], next);
826 		return true;
827 	}
828 	return false;
829 }
830 
831 /*
832  * Check events in order.
833  *
834  */
835 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
836 {
837 	preempt_disable();
838 	/* threshold event is triggered in finer grain than soft limit */
839 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
840 						MEM_CGROUP_TARGET_THRESH))) {
841 		bool do_softlimit;
842 		bool do_numainfo __maybe_unused;
843 
844 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
845 						MEM_CGROUP_TARGET_SOFTLIMIT);
846 #if MAX_NUMNODES > 1
847 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
848 						MEM_CGROUP_TARGET_NUMAINFO);
849 #endif
850 		preempt_enable();
851 
852 		mem_cgroup_threshold(memcg);
853 		if (unlikely(do_softlimit))
854 			mem_cgroup_update_tree(memcg, page);
855 #if MAX_NUMNODES > 1
856 		if (unlikely(do_numainfo))
857 			atomic_inc(&memcg->numainfo_events);
858 #endif
859 	} else
860 		preempt_enable();
861 }
862 
863 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
864 {
865 	return container_of(cgroup_subsys_state(cont,
866 				mem_cgroup_subsys_id), struct mem_cgroup,
867 				css);
868 }
869 
870 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
871 {
872 	/*
873 	 * mm_update_next_owner() may clear mm->owner to NULL
874 	 * if it races with swapoff, page migration, etc.
875 	 * So this can be called with p == NULL.
876 	 */
877 	if (unlikely(!p))
878 		return NULL;
879 
880 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
881 				struct mem_cgroup, css);
882 }
883 
884 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
885 {
886 	struct mem_cgroup *memcg = NULL;
887 
888 	if (!mm)
889 		return NULL;
890 	/*
891 	 * Because we have no locks, mm->owner's may be being moved to other
892 	 * cgroup. We use css_tryget() here even if this looks
893 	 * pessimistic (rather than adding locks here).
894 	 */
895 	rcu_read_lock();
896 	do {
897 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
898 		if (unlikely(!memcg))
899 			break;
900 	} while (!css_tryget(&memcg->css));
901 	rcu_read_unlock();
902 	return memcg;
903 }
904 
905 /**
906  * mem_cgroup_iter - iterate over memory cgroup hierarchy
907  * @root: hierarchy root
908  * @prev: previously returned memcg, NULL on first invocation
909  * @reclaim: cookie for shared reclaim walks, NULL for full walks
910  *
911  * Returns references to children of the hierarchy below @root, or
912  * @root itself, or %NULL after a full round-trip.
913  *
914  * Caller must pass the return value in @prev on subsequent
915  * invocations for reference counting, or use mem_cgroup_iter_break()
916  * to cancel a hierarchy walk before the round-trip is complete.
917  *
918  * Reclaimers can specify a zone and a priority level in @reclaim to
919  * divide up the memcgs in the hierarchy among all concurrent
920  * reclaimers operating on the same zone and priority.
921  */
922 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
923 				   struct mem_cgroup *prev,
924 				   struct mem_cgroup_reclaim_cookie *reclaim)
925 {
926 	struct mem_cgroup *memcg = NULL;
927 	int id = 0;
928 
929 	if (mem_cgroup_disabled())
930 		return NULL;
931 
932 	if (!root)
933 		root = root_mem_cgroup;
934 
935 	if (prev && !reclaim)
936 		id = css_id(&prev->css);
937 
938 	if (prev && prev != root)
939 		css_put(&prev->css);
940 
941 	if (!root->use_hierarchy && root != root_mem_cgroup) {
942 		if (prev)
943 			return NULL;
944 		return root;
945 	}
946 
947 	while (!memcg) {
948 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
949 		struct cgroup_subsys_state *css;
950 
951 		if (reclaim) {
952 			int nid = zone_to_nid(reclaim->zone);
953 			int zid = zone_idx(reclaim->zone);
954 			struct mem_cgroup_per_zone *mz;
955 
956 			mz = mem_cgroup_zoneinfo(root, nid, zid);
957 			iter = &mz->reclaim_iter[reclaim->priority];
958 			if (prev && reclaim->generation != iter->generation)
959 				return NULL;
960 			id = iter->position;
961 		}
962 
963 		rcu_read_lock();
964 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
965 		if (css) {
966 			if (css == &root->css || css_tryget(css))
967 				memcg = container_of(css,
968 						     struct mem_cgroup, css);
969 		} else
970 			id = 0;
971 		rcu_read_unlock();
972 
973 		if (reclaim) {
974 			iter->position = id;
975 			if (!css)
976 				iter->generation++;
977 			else if (!prev && memcg)
978 				reclaim->generation = iter->generation;
979 		}
980 
981 		if (prev && !css)
982 			return NULL;
983 	}
984 	return memcg;
985 }
986 
987 /**
988  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
989  * @root: hierarchy root
990  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
991  */
992 void mem_cgroup_iter_break(struct mem_cgroup *root,
993 			   struct mem_cgroup *prev)
994 {
995 	if (!root)
996 		root = root_mem_cgroup;
997 	if (prev && prev != root)
998 		css_put(&prev->css);
999 }
1000 
1001 /*
1002  * Iteration constructs for visiting all cgroups (under a tree).  If
1003  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1004  * be used for reference counting.
1005  */
1006 #define for_each_mem_cgroup_tree(iter, root)		\
1007 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1008 	     iter != NULL;				\
1009 	     iter = mem_cgroup_iter(root, iter, NULL))
1010 
1011 #define for_each_mem_cgroup(iter)			\
1012 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1013 	     iter != NULL;				\
1014 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1015 
1016 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1017 {
1018 	return (memcg == root_mem_cgroup);
1019 }
1020 
1021 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1022 {
1023 	struct mem_cgroup *memcg;
1024 
1025 	if (!mm)
1026 		return;
1027 
1028 	rcu_read_lock();
1029 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 	if (unlikely(!memcg))
1031 		goto out;
1032 
1033 	switch (idx) {
1034 	case PGFAULT:
1035 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1036 		break;
1037 	case PGMAJFAULT:
1038 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1039 		break;
1040 	default:
1041 		BUG();
1042 	}
1043 out:
1044 	rcu_read_unlock();
1045 }
1046 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1047 
1048 /**
1049  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1050  * @zone: zone of the wanted lruvec
1051  * @memcg: memcg of the wanted lruvec
1052  *
1053  * Returns the lru list vector holding pages for the given @zone and
1054  * @mem.  This can be the global zone lruvec, if the memory controller
1055  * is disabled.
1056  */
1057 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1058 				      struct mem_cgroup *memcg)
1059 {
1060 	struct mem_cgroup_per_zone *mz;
1061 
1062 	if (mem_cgroup_disabled())
1063 		return &zone->lruvec;
1064 
1065 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066 	return &mz->lruvec;
1067 }
1068 
1069 /*
1070  * Following LRU functions are allowed to be used without PCG_LOCK.
1071  * Operations are called by routine of global LRU independently from memcg.
1072  * What we have to take care of here is validness of pc->mem_cgroup.
1073  *
1074  * Changes to pc->mem_cgroup happens when
1075  * 1. charge
1076  * 2. moving account
1077  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1078  * It is added to LRU before charge.
1079  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1080  * When moving account, the page is not on LRU. It's isolated.
1081  */
1082 
1083 /**
1084  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1085  * @page: the page
1086  * @zone: zone of the page
1087  */
1088 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1089 {
1090 	struct mem_cgroup_per_zone *mz;
1091 	struct mem_cgroup *memcg;
1092 	struct page_cgroup *pc;
1093 
1094 	if (mem_cgroup_disabled())
1095 		return &zone->lruvec;
1096 
1097 	pc = lookup_page_cgroup(page);
1098 	memcg = pc->mem_cgroup;
1099 
1100 	/*
1101 	 * Surreptitiously switch any uncharged offlist page to root:
1102 	 * an uncharged page off lru does nothing to secure
1103 	 * its former mem_cgroup from sudden removal.
1104 	 *
1105 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1106 	 * under page_cgroup lock: between them, they make all uses
1107 	 * of pc->mem_cgroup safe.
1108 	 */
1109 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1110 		pc->mem_cgroup = memcg = root_mem_cgroup;
1111 
1112 	mz = page_cgroup_zoneinfo(memcg, page);
1113 	return &mz->lruvec;
1114 }
1115 
1116 /**
1117  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118  * @lruvec: mem_cgroup per zone lru vector
1119  * @lru: index of lru list the page is sitting on
1120  * @nr_pages: positive when adding or negative when removing
1121  *
1122  * This function must be called when a page is added to or removed from an
1123  * lru list.
1124  */
1125 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126 				int nr_pages)
1127 {
1128 	struct mem_cgroup_per_zone *mz;
1129 	unsigned long *lru_size;
1130 
1131 	if (mem_cgroup_disabled())
1132 		return;
1133 
1134 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135 	lru_size = mz->lru_size + lru;
1136 	*lru_size += nr_pages;
1137 	VM_BUG_ON((long)(*lru_size) < 0);
1138 }
1139 
1140 /*
1141  * Checks whether given mem is same or in the root_mem_cgroup's
1142  * hierarchy subtree
1143  */
1144 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1145 				  struct mem_cgroup *memcg)
1146 {
1147 	if (root_memcg == memcg)
1148 		return true;
1149 	if (!root_memcg->use_hierarchy || !memcg)
1150 		return false;
1151 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1152 }
1153 
1154 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1155 				       struct mem_cgroup *memcg)
1156 {
1157 	bool ret;
1158 
1159 	rcu_read_lock();
1160 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1161 	rcu_read_unlock();
1162 	return ret;
1163 }
1164 
1165 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1166 {
1167 	int ret;
1168 	struct mem_cgroup *curr = NULL;
1169 	struct task_struct *p;
1170 
1171 	p = find_lock_task_mm(task);
1172 	if (p) {
1173 		curr = try_get_mem_cgroup_from_mm(p->mm);
1174 		task_unlock(p);
1175 	} else {
1176 		/*
1177 		 * All threads may have already detached their mm's, but the oom
1178 		 * killer still needs to detect if they have already been oom
1179 		 * killed to prevent needlessly killing additional tasks.
1180 		 */
1181 		task_lock(task);
1182 		curr = mem_cgroup_from_task(task);
1183 		if (curr)
1184 			css_get(&curr->css);
1185 		task_unlock(task);
1186 	}
1187 	if (!curr)
1188 		return 0;
1189 	/*
1190 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1191 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1192 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1193 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1194 	 */
1195 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1196 	css_put(&curr->css);
1197 	return ret;
1198 }
1199 
1200 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1201 {
1202 	unsigned long inactive_ratio;
1203 	unsigned long inactive;
1204 	unsigned long active;
1205 	unsigned long gb;
1206 
1207 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1208 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1209 
1210 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1211 	if (gb)
1212 		inactive_ratio = int_sqrt(10 * gb);
1213 	else
1214 		inactive_ratio = 1;
1215 
1216 	return inactive * inactive_ratio < active;
1217 }
1218 
1219 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1220 {
1221 	unsigned long active;
1222 	unsigned long inactive;
1223 
1224 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1225 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1226 
1227 	return (active > inactive);
1228 }
1229 
1230 #define mem_cgroup_from_res_counter(counter, member)	\
1231 	container_of(counter, struct mem_cgroup, member)
1232 
1233 /**
1234  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1235  * @memcg: the memory cgroup
1236  *
1237  * Returns the maximum amount of memory @mem can be charged with, in
1238  * pages.
1239  */
1240 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1241 {
1242 	unsigned long long margin;
1243 
1244 	margin = res_counter_margin(&memcg->res);
1245 	if (do_swap_account)
1246 		margin = min(margin, res_counter_margin(&memcg->memsw));
1247 	return margin >> PAGE_SHIFT;
1248 }
1249 
1250 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1251 {
1252 	struct cgroup *cgrp = memcg->css.cgroup;
1253 
1254 	/* root ? */
1255 	if (cgrp->parent == NULL)
1256 		return vm_swappiness;
1257 
1258 	return memcg->swappiness;
1259 }
1260 
1261 /*
1262  * memcg->moving_account is used for checking possibility that some thread is
1263  * calling move_account(). When a thread on CPU-A starts moving pages under
1264  * a memcg, other threads should check memcg->moving_account under
1265  * rcu_read_lock(), like this:
1266  *
1267  *         CPU-A                                    CPU-B
1268  *                                              rcu_read_lock()
1269  *         memcg->moving_account+1              if (memcg->mocing_account)
1270  *                                                   take heavy locks.
1271  *         synchronize_rcu()                    update something.
1272  *                                              rcu_read_unlock()
1273  *         start move here.
1274  */
1275 
1276 /* for quick checking without looking up memcg */
1277 atomic_t memcg_moving __read_mostly;
1278 
1279 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1280 {
1281 	atomic_inc(&memcg_moving);
1282 	atomic_inc(&memcg->moving_account);
1283 	synchronize_rcu();
1284 }
1285 
1286 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1287 {
1288 	/*
1289 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1290 	 * We check NULL in callee rather than caller.
1291 	 */
1292 	if (memcg) {
1293 		atomic_dec(&memcg_moving);
1294 		atomic_dec(&memcg->moving_account);
1295 	}
1296 }
1297 
1298 /*
1299  * 2 routines for checking "mem" is under move_account() or not.
1300  *
1301  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1302  *			  is used for avoiding races in accounting.  If true,
1303  *			  pc->mem_cgroup may be overwritten.
1304  *
1305  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1306  *			  under hierarchy of moving cgroups. This is for
1307  *			  waiting at hith-memory prressure caused by "move".
1308  */
1309 
1310 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1311 {
1312 	VM_BUG_ON(!rcu_read_lock_held());
1313 	return atomic_read(&memcg->moving_account) > 0;
1314 }
1315 
1316 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1317 {
1318 	struct mem_cgroup *from;
1319 	struct mem_cgroup *to;
1320 	bool ret = false;
1321 	/*
1322 	 * Unlike task_move routines, we access mc.to, mc.from not under
1323 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1324 	 */
1325 	spin_lock(&mc.lock);
1326 	from = mc.from;
1327 	to = mc.to;
1328 	if (!from)
1329 		goto unlock;
1330 
1331 	ret = mem_cgroup_same_or_subtree(memcg, from)
1332 		|| mem_cgroup_same_or_subtree(memcg, to);
1333 unlock:
1334 	spin_unlock(&mc.lock);
1335 	return ret;
1336 }
1337 
1338 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1339 {
1340 	if (mc.moving_task && current != mc.moving_task) {
1341 		if (mem_cgroup_under_move(memcg)) {
1342 			DEFINE_WAIT(wait);
1343 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1344 			/* moving charge context might have finished. */
1345 			if (mc.moving_task)
1346 				schedule();
1347 			finish_wait(&mc.waitq, &wait);
1348 			return true;
1349 		}
1350 	}
1351 	return false;
1352 }
1353 
1354 /*
1355  * Take this lock when
1356  * - a code tries to modify page's memcg while it's USED.
1357  * - a code tries to modify page state accounting in a memcg.
1358  * see mem_cgroup_stolen(), too.
1359  */
1360 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1361 				  unsigned long *flags)
1362 {
1363 	spin_lock_irqsave(&memcg->move_lock, *flags);
1364 }
1365 
1366 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1367 				unsigned long *flags)
1368 {
1369 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1370 }
1371 
1372 /**
1373  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1374  * @memcg: The memory cgroup that went over limit
1375  * @p: Task that is going to be killed
1376  *
1377  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1378  * enabled
1379  */
1380 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1381 {
1382 	struct cgroup *task_cgrp;
1383 	struct cgroup *mem_cgrp;
1384 	/*
1385 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1386 	 * on the assumption that OOM is serialized for memory controller.
1387 	 * If this assumption is broken, revisit this code.
1388 	 */
1389 	static char memcg_name[PATH_MAX];
1390 	int ret;
1391 
1392 	if (!memcg || !p)
1393 		return;
1394 
1395 	rcu_read_lock();
1396 
1397 	mem_cgrp = memcg->css.cgroup;
1398 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1399 
1400 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1401 	if (ret < 0) {
1402 		/*
1403 		 * Unfortunately, we are unable to convert to a useful name
1404 		 * But we'll still print out the usage information
1405 		 */
1406 		rcu_read_unlock();
1407 		goto done;
1408 	}
1409 	rcu_read_unlock();
1410 
1411 	printk(KERN_INFO "Task in %s killed", memcg_name);
1412 
1413 	rcu_read_lock();
1414 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1415 	if (ret < 0) {
1416 		rcu_read_unlock();
1417 		goto done;
1418 	}
1419 	rcu_read_unlock();
1420 
1421 	/*
1422 	 * Continues from above, so we don't need an KERN_ level
1423 	 */
1424 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1425 done:
1426 
1427 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1428 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1429 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1430 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1431 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1432 		"failcnt %llu\n",
1433 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1434 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1435 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1436 }
1437 
1438 /*
1439  * This function returns the number of memcg under hierarchy tree. Returns
1440  * 1(self count) if no children.
1441  */
1442 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1443 {
1444 	int num = 0;
1445 	struct mem_cgroup *iter;
1446 
1447 	for_each_mem_cgroup_tree(iter, memcg)
1448 		num++;
1449 	return num;
1450 }
1451 
1452 /*
1453  * Return the memory (and swap, if configured) limit for a memcg.
1454  */
1455 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1456 {
1457 	u64 limit;
1458 	u64 memsw;
1459 
1460 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1461 	limit += total_swap_pages << PAGE_SHIFT;
1462 
1463 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1464 	/*
1465 	 * If memsw is finite and limits the amount of swap space available
1466 	 * to this memcg, return that limit.
1467 	 */
1468 	return min(limit, memsw);
1469 }
1470 
1471 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1472 			      int order)
1473 {
1474 	struct mem_cgroup *iter;
1475 	unsigned long chosen_points = 0;
1476 	unsigned long totalpages;
1477 	unsigned int points = 0;
1478 	struct task_struct *chosen = NULL;
1479 
1480 	/*
1481 	 * If current has a pending SIGKILL, then automatically select it.  The
1482 	 * goal is to allow it to allocate so that it may quickly exit and free
1483 	 * its memory.
1484 	 */
1485 	if (fatal_signal_pending(current)) {
1486 		set_thread_flag(TIF_MEMDIE);
1487 		return;
1488 	}
1489 
1490 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1491 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1492 	for_each_mem_cgroup_tree(iter, memcg) {
1493 		struct cgroup *cgroup = iter->css.cgroup;
1494 		struct cgroup_iter it;
1495 		struct task_struct *task;
1496 
1497 		cgroup_iter_start(cgroup, &it);
1498 		while ((task = cgroup_iter_next(cgroup, &it))) {
1499 			switch (oom_scan_process_thread(task, totalpages, NULL,
1500 							false)) {
1501 			case OOM_SCAN_SELECT:
1502 				if (chosen)
1503 					put_task_struct(chosen);
1504 				chosen = task;
1505 				chosen_points = ULONG_MAX;
1506 				get_task_struct(chosen);
1507 				/* fall through */
1508 			case OOM_SCAN_CONTINUE:
1509 				continue;
1510 			case OOM_SCAN_ABORT:
1511 				cgroup_iter_end(cgroup, &it);
1512 				mem_cgroup_iter_break(memcg, iter);
1513 				if (chosen)
1514 					put_task_struct(chosen);
1515 				return;
1516 			case OOM_SCAN_OK:
1517 				break;
1518 			};
1519 			points = oom_badness(task, memcg, NULL, totalpages);
1520 			if (points > chosen_points) {
1521 				if (chosen)
1522 					put_task_struct(chosen);
1523 				chosen = task;
1524 				chosen_points = points;
1525 				get_task_struct(chosen);
1526 			}
1527 		}
1528 		cgroup_iter_end(cgroup, &it);
1529 	}
1530 
1531 	if (!chosen)
1532 		return;
1533 	points = chosen_points * 1000 / totalpages;
1534 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1535 			 NULL, "Memory cgroup out of memory");
1536 }
1537 
1538 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1539 					gfp_t gfp_mask,
1540 					unsigned long flags)
1541 {
1542 	unsigned long total = 0;
1543 	bool noswap = false;
1544 	int loop;
1545 
1546 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1547 		noswap = true;
1548 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1549 		noswap = true;
1550 
1551 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1552 		if (loop)
1553 			drain_all_stock_async(memcg);
1554 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1555 		/*
1556 		 * Allow limit shrinkers, which are triggered directly
1557 		 * by userspace, to catch signals and stop reclaim
1558 		 * after minimal progress, regardless of the margin.
1559 		 */
1560 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1561 			break;
1562 		if (mem_cgroup_margin(memcg))
1563 			break;
1564 		/*
1565 		 * If nothing was reclaimed after two attempts, there
1566 		 * may be no reclaimable pages in this hierarchy.
1567 		 */
1568 		if (loop && !total)
1569 			break;
1570 	}
1571 	return total;
1572 }
1573 
1574 /**
1575  * test_mem_cgroup_node_reclaimable
1576  * @memcg: the target memcg
1577  * @nid: the node ID to be checked.
1578  * @noswap : specify true here if the user wants flle only information.
1579  *
1580  * This function returns whether the specified memcg contains any
1581  * reclaimable pages on a node. Returns true if there are any reclaimable
1582  * pages in the node.
1583  */
1584 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1585 		int nid, bool noswap)
1586 {
1587 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1588 		return true;
1589 	if (noswap || !total_swap_pages)
1590 		return false;
1591 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1592 		return true;
1593 	return false;
1594 
1595 }
1596 #if MAX_NUMNODES > 1
1597 
1598 /*
1599  * Always updating the nodemask is not very good - even if we have an empty
1600  * list or the wrong list here, we can start from some node and traverse all
1601  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1602  *
1603  */
1604 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1605 {
1606 	int nid;
1607 	/*
1608 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1609 	 * pagein/pageout changes since the last update.
1610 	 */
1611 	if (!atomic_read(&memcg->numainfo_events))
1612 		return;
1613 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1614 		return;
1615 
1616 	/* make a nodemask where this memcg uses memory from */
1617 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1618 
1619 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1620 
1621 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1622 			node_clear(nid, memcg->scan_nodes);
1623 	}
1624 
1625 	atomic_set(&memcg->numainfo_events, 0);
1626 	atomic_set(&memcg->numainfo_updating, 0);
1627 }
1628 
1629 /*
1630  * Selecting a node where we start reclaim from. Because what we need is just
1631  * reducing usage counter, start from anywhere is O,K. Considering
1632  * memory reclaim from current node, there are pros. and cons.
1633  *
1634  * Freeing memory from current node means freeing memory from a node which
1635  * we'll use or we've used. So, it may make LRU bad. And if several threads
1636  * hit limits, it will see a contention on a node. But freeing from remote
1637  * node means more costs for memory reclaim because of memory latency.
1638  *
1639  * Now, we use round-robin. Better algorithm is welcomed.
1640  */
1641 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1642 {
1643 	int node;
1644 
1645 	mem_cgroup_may_update_nodemask(memcg);
1646 	node = memcg->last_scanned_node;
1647 
1648 	node = next_node(node, memcg->scan_nodes);
1649 	if (node == MAX_NUMNODES)
1650 		node = first_node(memcg->scan_nodes);
1651 	/*
1652 	 * We call this when we hit limit, not when pages are added to LRU.
1653 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1654 	 * memcg is too small and all pages are not on LRU. In that case,
1655 	 * we use curret node.
1656 	 */
1657 	if (unlikely(node == MAX_NUMNODES))
1658 		node = numa_node_id();
1659 
1660 	memcg->last_scanned_node = node;
1661 	return node;
1662 }
1663 
1664 /*
1665  * Check all nodes whether it contains reclaimable pages or not.
1666  * For quick scan, we make use of scan_nodes. This will allow us to skip
1667  * unused nodes. But scan_nodes is lazily updated and may not cotain
1668  * enough new information. We need to do double check.
1669  */
1670 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1671 {
1672 	int nid;
1673 
1674 	/*
1675 	 * quick check...making use of scan_node.
1676 	 * We can skip unused nodes.
1677 	 */
1678 	if (!nodes_empty(memcg->scan_nodes)) {
1679 		for (nid = first_node(memcg->scan_nodes);
1680 		     nid < MAX_NUMNODES;
1681 		     nid = next_node(nid, memcg->scan_nodes)) {
1682 
1683 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1684 				return true;
1685 		}
1686 	}
1687 	/*
1688 	 * Check rest of nodes.
1689 	 */
1690 	for_each_node_state(nid, N_HIGH_MEMORY) {
1691 		if (node_isset(nid, memcg->scan_nodes))
1692 			continue;
1693 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1694 			return true;
1695 	}
1696 	return false;
1697 }
1698 
1699 #else
1700 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1701 {
1702 	return 0;
1703 }
1704 
1705 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1706 {
1707 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1708 }
1709 #endif
1710 
1711 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1712 				   struct zone *zone,
1713 				   gfp_t gfp_mask,
1714 				   unsigned long *total_scanned)
1715 {
1716 	struct mem_cgroup *victim = NULL;
1717 	int total = 0;
1718 	int loop = 0;
1719 	unsigned long excess;
1720 	unsigned long nr_scanned;
1721 	struct mem_cgroup_reclaim_cookie reclaim = {
1722 		.zone = zone,
1723 		.priority = 0,
1724 	};
1725 
1726 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1727 
1728 	while (1) {
1729 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1730 		if (!victim) {
1731 			loop++;
1732 			if (loop >= 2) {
1733 				/*
1734 				 * If we have not been able to reclaim
1735 				 * anything, it might because there are
1736 				 * no reclaimable pages under this hierarchy
1737 				 */
1738 				if (!total)
1739 					break;
1740 				/*
1741 				 * We want to do more targeted reclaim.
1742 				 * excess >> 2 is not to excessive so as to
1743 				 * reclaim too much, nor too less that we keep
1744 				 * coming back to reclaim from this cgroup
1745 				 */
1746 				if (total >= (excess >> 2) ||
1747 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1748 					break;
1749 			}
1750 			continue;
1751 		}
1752 		if (!mem_cgroup_reclaimable(victim, false))
1753 			continue;
1754 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 						     zone, &nr_scanned);
1756 		*total_scanned += nr_scanned;
1757 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1758 			break;
1759 	}
1760 	mem_cgroup_iter_break(root_memcg, victim);
1761 	return total;
1762 }
1763 
1764 /*
1765  * Check OOM-Killer is already running under our hierarchy.
1766  * If someone is running, return false.
1767  * Has to be called with memcg_oom_lock
1768  */
1769 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1770 {
1771 	struct mem_cgroup *iter, *failed = NULL;
1772 
1773 	for_each_mem_cgroup_tree(iter, memcg) {
1774 		if (iter->oom_lock) {
1775 			/*
1776 			 * this subtree of our hierarchy is already locked
1777 			 * so we cannot give a lock.
1778 			 */
1779 			failed = iter;
1780 			mem_cgroup_iter_break(memcg, iter);
1781 			break;
1782 		} else
1783 			iter->oom_lock = true;
1784 	}
1785 
1786 	if (!failed)
1787 		return true;
1788 
1789 	/*
1790 	 * OK, we failed to lock the whole subtree so we have to clean up
1791 	 * what we set up to the failing subtree
1792 	 */
1793 	for_each_mem_cgroup_tree(iter, memcg) {
1794 		if (iter == failed) {
1795 			mem_cgroup_iter_break(memcg, iter);
1796 			break;
1797 		}
1798 		iter->oom_lock = false;
1799 	}
1800 	return false;
1801 }
1802 
1803 /*
1804  * Has to be called with memcg_oom_lock
1805  */
1806 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1807 {
1808 	struct mem_cgroup *iter;
1809 
1810 	for_each_mem_cgroup_tree(iter, memcg)
1811 		iter->oom_lock = false;
1812 	return 0;
1813 }
1814 
1815 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1816 {
1817 	struct mem_cgroup *iter;
1818 
1819 	for_each_mem_cgroup_tree(iter, memcg)
1820 		atomic_inc(&iter->under_oom);
1821 }
1822 
1823 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1824 {
1825 	struct mem_cgroup *iter;
1826 
1827 	/*
1828 	 * When a new child is created while the hierarchy is under oom,
1829 	 * mem_cgroup_oom_lock() may not be called. We have to use
1830 	 * atomic_add_unless() here.
1831 	 */
1832 	for_each_mem_cgroup_tree(iter, memcg)
1833 		atomic_add_unless(&iter->under_oom, -1, 0);
1834 }
1835 
1836 static DEFINE_SPINLOCK(memcg_oom_lock);
1837 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1838 
1839 struct oom_wait_info {
1840 	struct mem_cgroup *memcg;
1841 	wait_queue_t	wait;
1842 };
1843 
1844 static int memcg_oom_wake_function(wait_queue_t *wait,
1845 	unsigned mode, int sync, void *arg)
1846 {
1847 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1848 	struct mem_cgroup *oom_wait_memcg;
1849 	struct oom_wait_info *oom_wait_info;
1850 
1851 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1852 	oom_wait_memcg = oom_wait_info->memcg;
1853 
1854 	/*
1855 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1856 	 * Then we can use css_is_ancestor without taking care of RCU.
1857 	 */
1858 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1859 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1860 		return 0;
1861 	return autoremove_wake_function(wait, mode, sync, arg);
1862 }
1863 
1864 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1865 {
1866 	/* for filtering, pass "memcg" as argument. */
1867 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 }
1869 
1870 static void memcg_oom_recover(struct mem_cgroup *memcg)
1871 {
1872 	if (memcg && atomic_read(&memcg->under_oom))
1873 		memcg_wakeup_oom(memcg);
1874 }
1875 
1876 /*
1877  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1878  */
1879 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1880 				  int order)
1881 {
1882 	struct oom_wait_info owait;
1883 	bool locked, need_to_kill;
1884 
1885 	owait.memcg = memcg;
1886 	owait.wait.flags = 0;
1887 	owait.wait.func = memcg_oom_wake_function;
1888 	owait.wait.private = current;
1889 	INIT_LIST_HEAD(&owait.wait.task_list);
1890 	need_to_kill = true;
1891 	mem_cgroup_mark_under_oom(memcg);
1892 
1893 	/* At first, try to OOM lock hierarchy under memcg.*/
1894 	spin_lock(&memcg_oom_lock);
1895 	locked = mem_cgroup_oom_lock(memcg);
1896 	/*
1897 	 * Even if signal_pending(), we can't quit charge() loop without
1898 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1899 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1900 	 */
1901 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1902 	if (!locked || memcg->oom_kill_disable)
1903 		need_to_kill = false;
1904 	if (locked)
1905 		mem_cgroup_oom_notify(memcg);
1906 	spin_unlock(&memcg_oom_lock);
1907 
1908 	if (need_to_kill) {
1909 		finish_wait(&memcg_oom_waitq, &owait.wait);
1910 		mem_cgroup_out_of_memory(memcg, mask, order);
1911 	} else {
1912 		schedule();
1913 		finish_wait(&memcg_oom_waitq, &owait.wait);
1914 	}
1915 	spin_lock(&memcg_oom_lock);
1916 	if (locked)
1917 		mem_cgroup_oom_unlock(memcg);
1918 	memcg_wakeup_oom(memcg);
1919 	spin_unlock(&memcg_oom_lock);
1920 
1921 	mem_cgroup_unmark_under_oom(memcg);
1922 
1923 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1924 		return false;
1925 	/* Give chance to dying process */
1926 	schedule_timeout_uninterruptible(1);
1927 	return true;
1928 }
1929 
1930 /*
1931  * Currently used to update mapped file statistics, but the routine can be
1932  * generalized to update other statistics as well.
1933  *
1934  * Notes: Race condition
1935  *
1936  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937  * it tends to be costly. But considering some conditions, we doesn't need
1938  * to do so _always_.
1939  *
1940  * Considering "charge", lock_page_cgroup() is not required because all
1941  * file-stat operations happen after a page is attached to radix-tree. There
1942  * are no race with "charge".
1943  *
1944  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946  * if there are race with "uncharge". Statistics itself is properly handled
1947  * by flags.
1948  *
1949  * Considering "move", this is an only case we see a race. To make the race
1950  * small, we check mm->moving_account and detect there are possibility of race
1951  * If there is, we take a lock.
1952  */
1953 
1954 void __mem_cgroup_begin_update_page_stat(struct page *page,
1955 				bool *locked, unsigned long *flags)
1956 {
1957 	struct mem_cgroup *memcg;
1958 	struct page_cgroup *pc;
1959 
1960 	pc = lookup_page_cgroup(page);
1961 again:
1962 	memcg = pc->mem_cgroup;
1963 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1964 		return;
1965 	/*
1966 	 * If this memory cgroup is not under account moving, we don't
1967 	 * need to take move_lock_mem_cgroup(). Because we already hold
1968 	 * rcu_read_lock(), any calls to move_account will be delayed until
1969 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1970 	 */
1971 	if (!mem_cgroup_stolen(memcg))
1972 		return;
1973 
1974 	move_lock_mem_cgroup(memcg, flags);
1975 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1976 		move_unlock_mem_cgroup(memcg, flags);
1977 		goto again;
1978 	}
1979 	*locked = true;
1980 }
1981 
1982 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1983 {
1984 	struct page_cgroup *pc = lookup_page_cgroup(page);
1985 
1986 	/*
1987 	 * It's guaranteed that pc->mem_cgroup never changes while
1988 	 * lock is held because a routine modifies pc->mem_cgroup
1989 	 * should take move_lock_mem_cgroup().
1990 	 */
1991 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1992 }
1993 
1994 void mem_cgroup_update_page_stat(struct page *page,
1995 				 enum mem_cgroup_page_stat_item idx, int val)
1996 {
1997 	struct mem_cgroup *memcg;
1998 	struct page_cgroup *pc = lookup_page_cgroup(page);
1999 	unsigned long uninitialized_var(flags);
2000 
2001 	if (mem_cgroup_disabled())
2002 		return;
2003 
2004 	memcg = pc->mem_cgroup;
2005 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2006 		return;
2007 
2008 	switch (idx) {
2009 	case MEMCG_NR_FILE_MAPPED:
2010 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2011 		break;
2012 	default:
2013 		BUG();
2014 	}
2015 
2016 	this_cpu_add(memcg->stat->count[idx], val);
2017 }
2018 
2019 /*
2020  * size of first charge trial. "32" comes from vmscan.c's magic value.
2021  * TODO: maybe necessary to use big numbers in big irons.
2022  */
2023 #define CHARGE_BATCH	32U
2024 struct memcg_stock_pcp {
2025 	struct mem_cgroup *cached; /* this never be root cgroup */
2026 	unsigned int nr_pages;
2027 	struct work_struct work;
2028 	unsigned long flags;
2029 #define FLUSHING_CACHED_CHARGE	0
2030 };
2031 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2032 static DEFINE_MUTEX(percpu_charge_mutex);
2033 
2034 /*
2035  * Try to consume stocked charge on this cpu. If success, one page is consumed
2036  * from local stock and true is returned. If the stock is 0 or charges from a
2037  * cgroup which is not current target, returns false. This stock will be
2038  * refilled.
2039  */
2040 static bool consume_stock(struct mem_cgroup *memcg)
2041 {
2042 	struct memcg_stock_pcp *stock;
2043 	bool ret = true;
2044 
2045 	stock = &get_cpu_var(memcg_stock);
2046 	if (memcg == stock->cached && stock->nr_pages)
2047 		stock->nr_pages--;
2048 	else /* need to call res_counter_charge */
2049 		ret = false;
2050 	put_cpu_var(memcg_stock);
2051 	return ret;
2052 }
2053 
2054 /*
2055  * Returns stocks cached in percpu to res_counter and reset cached information.
2056  */
2057 static void drain_stock(struct memcg_stock_pcp *stock)
2058 {
2059 	struct mem_cgroup *old = stock->cached;
2060 
2061 	if (stock->nr_pages) {
2062 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2063 
2064 		res_counter_uncharge(&old->res, bytes);
2065 		if (do_swap_account)
2066 			res_counter_uncharge(&old->memsw, bytes);
2067 		stock->nr_pages = 0;
2068 	}
2069 	stock->cached = NULL;
2070 }
2071 
2072 /*
2073  * This must be called under preempt disabled or must be called by
2074  * a thread which is pinned to local cpu.
2075  */
2076 static void drain_local_stock(struct work_struct *dummy)
2077 {
2078 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2079 	drain_stock(stock);
2080 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2081 }
2082 
2083 /*
2084  * Cache charges(val) which is from res_counter, to local per_cpu area.
2085  * This will be consumed by consume_stock() function, later.
2086  */
2087 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2088 {
2089 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2090 
2091 	if (stock->cached != memcg) { /* reset if necessary */
2092 		drain_stock(stock);
2093 		stock->cached = memcg;
2094 	}
2095 	stock->nr_pages += nr_pages;
2096 	put_cpu_var(memcg_stock);
2097 }
2098 
2099 /*
2100  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2101  * of the hierarchy under it. sync flag says whether we should block
2102  * until the work is done.
2103  */
2104 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2105 {
2106 	int cpu, curcpu;
2107 
2108 	/* Notify other cpus that system-wide "drain" is running */
2109 	get_online_cpus();
2110 	curcpu = get_cpu();
2111 	for_each_online_cpu(cpu) {
2112 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2113 		struct mem_cgroup *memcg;
2114 
2115 		memcg = stock->cached;
2116 		if (!memcg || !stock->nr_pages)
2117 			continue;
2118 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2119 			continue;
2120 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2121 			if (cpu == curcpu)
2122 				drain_local_stock(&stock->work);
2123 			else
2124 				schedule_work_on(cpu, &stock->work);
2125 		}
2126 	}
2127 	put_cpu();
2128 
2129 	if (!sync)
2130 		goto out;
2131 
2132 	for_each_online_cpu(cpu) {
2133 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2134 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2135 			flush_work(&stock->work);
2136 	}
2137 out:
2138  	put_online_cpus();
2139 }
2140 
2141 /*
2142  * Tries to drain stocked charges in other cpus. This function is asynchronous
2143  * and just put a work per cpu for draining localy on each cpu. Caller can
2144  * expects some charges will be back to res_counter later but cannot wait for
2145  * it.
2146  */
2147 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2148 {
2149 	/*
2150 	 * If someone calls draining, avoid adding more kworker runs.
2151 	 */
2152 	if (!mutex_trylock(&percpu_charge_mutex))
2153 		return;
2154 	drain_all_stock(root_memcg, false);
2155 	mutex_unlock(&percpu_charge_mutex);
2156 }
2157 
2158 /* This is a synchronous drain interface. */
2159 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2160 {
2161 	/* called when force_empty is called */
2162 	mutex_lock(&percpu_charge_mutex);
2163 	drain_all_stock(root_memcg, true);
2164 	mutex_unlock(&percpu_charge_mutex);
2165 }
2166 
2167 /*
2168  * This function drains percpu counter value from DEAD cpu and
2169  * move it to local cpu. Note that this function can be preempted.
2170  */
2171 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2172 {
2173 	int i;
2174 
2175 	spin_lock(&memcg->pcp_counter_lock);
2176 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2177 		long x = per_cpu(memcg->stat->count[i], cpu);
2178 
2179 		per_cpu(memcg->stat->count[i], cpu) = 0;
2180 		memcg->nocpu_base.count[i] += x;
2181 	}
2182 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2183 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2184 
2185 		per_cpu(memcg->stat->events[i], cpu) = 0;
2186 		memcg->nocpu_base.events[i] += x;
2187 	}
2188 	spin_unlock(&memcg->pcp_counter_lock);
2189 }
2190 
2191 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2192 					unsigned long action,
2193 					void *hcpu)
2194 {
2195 	int cpu = (unsigned long)hcpu;
2196 	struct memcg_stock_pcp *stock;
2197 	struct mem_cgroup *iter;
2198 
2199 	if (action == CPU_ONLINE)
2200 		return NOTIFY_OK;
2201 
2202 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2203 		return NOTIFY_OK;
2204 
2205 	for_each_mem_cgroup(iter)
2206 		mem_cgroup_drain_pcp_counter(iter, cpu);
2207 
2208 	stock = &per_cpu(memcg_stock, cpu);
2209 	drain_stock(stock);
2210 	return NOTIFY_OK;
2211 }
2212 
2213 
2214 /* See __mem_cgroup_try_charge() for details */
2215 enum {
2216 	CHARGE_OK,		/* success */
2217 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2218 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2219 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2220 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2221 };
2222 
2223 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2224 				unsigned int nr_pages, bool oom_check)
2225 {
2226 	unsigned long csize = nr_pages * PAGE_SIZE;
2227 	struct mem_cgroup *mem_over_limit;
2228 	struct res_counter *fail_res;
2229 	unsigned long flags = 0;
2230 	int ret;
2231 
2232 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2233 
2234 	if (likely(!ret)) {
2235 		if (!do_swap_account)
2236 			return CHARGE_OK;
2237 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2238 		if (likely(!ret))
2239 			return CHARGE_OK;
2240 
2241 		res_counter_uncharge(&memcg->res, csize);
2242 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2243 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2244 	} else
2245 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2246 	/*
2247 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2248 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2249 	 *
2250 	 * Never reclaim on behalf of optional batching, retry with a
2251 	 * single page instead.
2252 	 */
2253 	if (nr_pages == CHARGE_BATCH)
2254 		return CHARGE_RETRY;
2255 
2256 	if (!(gfp_mask & __GFP_WAIT))
2257 		return CHARGE_WOULDBLOCK;
2258 
2259 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2260 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2261 		return CHARGE_RETRY;
2262 	/*
2263 	 * Even though the limit is exceeded at this point, reclaim
2264 	 * may have been able to free some pages.  Retry the charge
2265 	 * before killing the task.
2266 	 *
2267 	 * Only for regular pages, though: huge pages are rather
2268 	 * unlikely to succeed so close to the limit, and we fall back
2269 	 * to regular pages anyway in case of failure.
2270 	 */
2271 	if (nr_pages == 1 && ret)
2272 		return CHARGE_RETRY;
2273 
2274 	/*
2275 	 * At task move, charge accounts can be doubly counted. So, it's
2276 	 * better to wait until the end of task_move if something is going on.
2277 	 */
2278 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2279 		return CHARGE_RETRY;
2280 
2281 	/* If we don't need to call oom-killer at el, return immediately */
2282 	if (!oom_check)
2283 		return CHARGE_NOMEM;
2284 	/* check OOM */
2285 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2286 		return CHARGE_OOM_DIE;
2287 
2288 	return CHARGE_RETRY;
2289 }
2290 
2291 /*
2292  * __mem_cgroup_try_charge() does
2293  * 1. detect memcg to be charged against from passed *mm and *ptr,
2294  * 2. update res_counter
2295  * 3. call memory reclaim if necessary.
2296  *
2297  * In some special case, if the task is fatal, fatal_signal_pending() or
2298  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2299  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2300  * as possible without any hazards. 2: all pages should have a valid
2301  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2302  * pointer, that is treated as a charge to root_mem_cgroup.
2303  *
2304  * So __mem_cgroup_try_charge() will return
2305  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2306  *  -ENOMEM ...  charge failure because of resource limits.
2307  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2308  *
2309  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2310  * the oom-killer can be invoked.
2311  */
2312 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2313 				   gfp_t gfp_mask,
2314 				   unsigned int nr_pages,
2315 				   struct mem_cgroup **ptr,
2316 				   bool oom)
2317 {
2318 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2319 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2320 	struct mem_cgroup *memcg = NULL;
2321 	int ret;
2322 
2323 	/*
2324 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2325 	 * in system level. So, allow to go ahead dying process in addition to
2326 	 * MEMDIE process.
2327 	 */
2328 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2329 		     || fatal_signal_pending(current)))
2330 		goto bypass;
2331 
2332 	/*
2333 	 * We always charge the cgroup the mm_struct belongs to.
2334 	 * The mm_struct's mem_cgroup changes on task migration if the
2335 	 * thread group leader migrates. It's possible that mm is not
2336 	 * set, if so charge the root memcg (happens for pagecache usage).
2337 	 */
2338 	if (!*ptr && !mm)
2339 		*ptr = root_mem_cgroup;
2340 again:
2341 	if (*ptr) { /* css should be a valid one */
2342 		memcg = *ptr;
2343 		VM_BUG_ON(css_is_removed(&memcg->css));
2344 		if (mem_cgroup_is_root(memcg))
2345 			goto done;
2346 		if (nr_pages == 1 && consume_stock(memcg))
2347 			goto done;
2348 		css_get(&memcg->css);
2349 	} else {
2350 		struct task_struct *p;
2351 
2352 		rcu_read_lock();
2353 		p = rcu_dereference(mm->owner);
2354 		/*
2355 		 * Because we don't have task_lock(), "p" can exit.
2356 		 * In that case, "memcg" can point to root or p can be NULL with
2357 		 * race with swapoff. Then, we have small risk of mis-accouning.
2358 		 * But such kind of mis-account by race always happens because
2359 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2360 		 * small race, here.
2361 		 * (*) swapoff at el will charge against mm-struct not against
2362 		 * task-struct. So, mm->owner can be NULL.
2363 		 */
2364 		memcg = mem_cgroup_from_task(p);
2365 		if (!memcg)
2366 			memcg = root_mem_cgroup;
2367 		if (mem_cgroup_is_root(memcg)) {
2368 			rcu_read_unlock();
2369 			goto done;
2370 		}
2371 		if (nr_pages == 1 && consume_stock(memcg)) {
2372 			/*
2373 			 * It seems dagerous to access memcg without css_get().
2374 			 * But considering how consume_stok works, it's not
2375 			 * necessary. If consume_stock success, some charges
2376 			 * from this memcg are cached on this cpu. So, we
2377 			 * don't need to call css_get()/css_tryget() before
2378 			 * calling consume_stock().
2379 			 */
2380 			rcu_read_unlock();
2381 			goto done;
2382 		}
2383 		/* after here, we may be blocked. we need to get refcnt */
2384 		if (!css_tryget(&memcg->css)) {
2385 			rcu_read_unlock();
2386 			goto again;
2387 		}
2388 		rcu_read_unlock();
2389 	}
2390 
2391 	do {
2392 		bool oom_check;
2393 
2394 		/* If killed, bypass charge */
2395 		if (fatal_signal_pending(current)) {
2396 			css_put(&memcg->css);
2397 			goto bypass;
2398 		}
2399 
2400 		oom_check = false;
2401 		if (oom && !nr_oom_retries) {
2402 			oom_check = true;
2403 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2404 		}
2405 
2406 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2407 		switch (ret) {
2408 		case CHARGE_OK:
2409 			break;
2410 		case CHARGE_RETRY: /* not in OOM situation but retry */
2411 			batch = nr_pages;
2412 			css_put(&memcg->css);
2413 			memcg = NULL;
2414 			goto again;
2415 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2416 			css_put(&memcg->css);
2417 			goto nomem;
2418 		case CHARGE_NOMEM: /* OOM routine works */
2419 			if (!oom) {
2420 				css_put(&memcg->css);
2421 				goto nomem;
2422 			}
2423 			/* If oom, we never return -ENOMEM */
2424 			nr_oom_retries--;
2425 			break;
2426 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2427 			css_put(&memcg->css);
2428 			goto bypass;
2429 		}
2430 	} while (ret != CHARGE_OK);
2431 
2432 	if (batch > nr_pages)
2433 		refill_stock(memcg, batch - nr_pages);
2434 	css_put(&memcg->css);
2435 done:
2436 	*ptr = memcg;
2437 	return 0;
2438 nomem:
2439 	*ptr = NULL;
2440 	return -ENOMEM;
2441 bypass:
2442 	*ptr = root_mem_cgroup;
2443 	return -EINTR;
2444 }
2445 
2446 /*
2447  * Somemtimes we have to undo a charge we got by try_charge().
2448  * This function is for that and do uncharge, put css's refcnt.
2449  * gotten by try_charge().
2450  */
2451 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2452 				       unsigned int nr_pages)
2453 {
2454 	if (!mem_cgroup_is_root(memcg)) {
2455 		unsigned long bytes = nr_pages * PAGE_SIZE;
2456 
2457 		res_counter_uncharge(&memcg->res, bytes);
2458 		if (do_swap_account)
2459 			res_counter_uncharge(&memcg->memsw, bytes);
2460 	}
2461 }
2462 
2463 /*
2464  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2465  * This is useful when moving usage to parent cgroup.
2466  */
2467 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2468 					unsigned int nr_pages)
2469 {
2470 	unsigned long bytes = nr_pages * PAGE_SIZE;
2471 
2472 	if (mem_cgroup_is_root(memcg))
2473 		return;
2474 
2475 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2476 	if (do_swap_account)
2477 		res_counter_uncharge_until(&memcg->memsw,
2478 						memcg->memsw.parent, bytes);
2479 }
2480 
2481 /*
2482  * A helper function to get mem_cgroup from ID. must be called under
2483  * rcu_read_lock(). The caller must check css_is_removed() or some if
2484  * it's concern. (dropping refcnt from swap can be called against removed
2485  * memcg.)
2486  */
2487 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2488 {
2489 	struct cgroup_subsys_state *css;
2490 
2491 	/* ID 0 is unused ID */
2492 	if (!id)
2493 		return NULL;
2494 	css = css_lookup(&mem_cgroup_subsys, id);
2495 	if (!css)
2496 		return NULL;
2497 	return container_of(css, struct mem_cgroup, css);
2498 }
2499 
2500 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2501 {
2502 	struct mem_cgroup *memcg = NULL;
2503 	struct page_cgroup *pc;
2504 	unsigned short id;
2505 	swp_entry_t ent;
2506 
2507 	VM_BUG_ON(!PageLocked(page));
2508 
2509 	pc = lookup_page_cgroup(page);
2510 	lock_page_cgroup(pc);
2511 	if (PageCgroupUsed(pc)) {
2512 		memcg = pc->mem_cgroup;
2513 		if (memcg && !css_tryget(&memcg->css))
2514 			memcg = NULL;
2515 	} else if (PageSwapCache(page)) {
2516 		ent.val = page_private(page);
2517 		id = lookup_swap_cgroup_id(ent);
2518 		rcu_read_lock();
2519 		memcg = mem_cgroup_lookup(id);
2520 		if (memcg && !css_tryget(&memcg->css))
2521 			memcg = NULL;
2522 		rcu_read_unlock();
2523 	}
2524 	unlock_page_cgroup(pc);
2525 	return memcg;
2526 }
2527 
2528 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2529 				       struct page *page,
2530 				       unsigned int nr_pages,
2531 				       enum charge_type ctype,
2532 				       bool lrucare)
2533 {
2534 	struct page_cgroup *pc = lookup_page_cgroup(page);
2535 	struct zone *uninitialized_var(zone);
2536 	struct lruvec *lruvec;
2537 	bool was_on_lru = false;
2538 	bool anon;
2539 
2540 	lock_page_cgroup(pc);
2541 	VM_BUG_ON(PageCgroupUsed(pc));
2542 	/*
2543 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2544 	 * accessed by any other context at this point.
2545 	 */
2546 
2547 	/*
2548 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2549 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2550 	 */
2551 	if (lrucare) {
2552 		zone = page_zone(page);
2553 		spin_lock_irq(&zone->lru_lock);
2554 		if (PageLRU(page)) {
2555 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2556 			ClearPageLRU(page);
2557 			del_page_from_lru_list(page, lruvec, page_lru(page));
2558 			was_on_lru = true;
2559 		}
2560 	}
2561 
2562 	pc->mem_cgroup = memcg;
2563 	/*
2564 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2565 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2566 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2567 	 * before USED bit, we need memory barrier here.
2568 	 * See mem_cgroup_add_lru_list(), etc.
2569  	 */
2570 	smp_wmb();
2571 	SetPageCgroupUsed(pc);
2572 
2573 	if (lrucare) {
2574 		if (was_on_lru) {
2575 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2576 			VM_BUG_ON(PageLRU(page));
2577 			SetPageLRU(page);
2578 			add_page_to_lru_list(page, lruvec, page_lru(page));
2579 		}
2580 		spin_unlock_irq(&zone->lru_lock);
2581 	}
2582 
2583 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2584 		anon = true;
2585 	else
2586 		anon = false;
2587 
2588 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2589 	unlock_page_cgroup(pc);
2590 
2591 	/*
2592 	 * "charge_statistics" updated event counter. Then, check it.
2593 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2594 	 * if they exceeds softlimit.
2595 	 */
2596 	memcg_check_events(memcg, page);
2597 }
2598 
2599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2600 
2601 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2602 /*
2603  * Because tail pages are not marked as "used", set it. We're under
2604  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2605  * charge/uncharge will be never happen and move_account() is done under
2606  * compound_lock(), so we don't have to take care of races.
2607  */
2608 void mem_cgroup_split_huge_fixup(struct page *head)
2609 {
2610 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2611 	struct page_cgroup *pc;
2612 	int i;
2613 
2614 	if (mem_cgroup_disabled())
2615 		return;
2616 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2617 		pc = head_pc + i;
2618 		pc->mem_cgroup = head_pc->mem_cgroup;
2619 		smp_wmb();/* see __commit_charge() */
2620 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2621 	}
2622 }
2623 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2624 
2625 /**
2626  * mem_cgroup_move_account - move account of the page
2627  * @page: the page
2628  * @nr_pages: number of regular pages (>1 for huge pages)
2629  * @pc:	page_cgroup of the page.
2630  * @from: mem_cgroup which the page is moved from.
2631  * @to:	mem_cgroup which the page is moved to. @from != @to.
2632  *
2633  * The caller must confirm following.
2634  * - page is not on LRU (isolate_page() is useful.)
2635  * - compound_lock is held when nr_pages > 1
2636  *
2637  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2638  * from old cgroup.
2639  */
2640 static int mem_cgroup_move_account(struct page *page,
2641 				   unsigned int nr_pages,
2642 				   struct page_cgroup *pc,
2643 				   struct mem_cgroup *from,
2644 				   struct mem_cgroup *to)
2645 {
2646 	unsigned long flags;
2647 	int ret;
2648 	bool anon = PageAnon(page);
2649 
2650 	VM_BUG_ON(from == to);
2651 	VM_BUG_ON(PageLRU(page));
2652 	/*
2653 	 * The page is isolated from LRU. So, collapse function
2654 	 * will not handle this page. But page splitting can happen.
2655 	 * Do this check under compound_page_lock(). The caller should
2656 	 * hold it.
2657 	 */
2658 	ret = -EBUSY;
2659 	if (nr_pages > 1 && !PageTransHuge(page))
2660 		goto out;
2661 
2662 	lock_page_cgroup(pc);
2663 
2664 	ret = -EINVAL;
2665 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2666 		goto unlock;
2667 
2668 	move_lock_mem_cgroup(from, &flags);
2669 
2670 	if (!anon && page_mapped(page)) {
2671 		/* Update mapped_file data for mem_cgroup */
2672 		preempt_disable();
2673 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2674 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2675 		preempt_enable();
2676 	}
2677 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2678 
2679 	/* caller should have done css_get */
2680 	pc->mem_cgroup = to;
2681 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2682 	/*
2683 	 * We charges against "to" which may not have any tasks. Then, "to"
2684 	 * can be under rmdir(). But in current implementation, caller of
2685 	 * this function is just force_empty() and move charge, so it's
2686 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2687 	 * status here.
2688 	 */
2689 	move_unlock_mem_cgroup(from, &flags);
2690 	ret = 0;
2691 unlock:
2692 	unlock_page_cgroup(pc);
2693 	/*
2694 	 * check events
2695 	 */
2696 	memcg_check_events(to, page);
2697 	memcg_check_events(from, page);
2698 out:
2699 	return ret;
2700 }
2701 
2702 /*
2703  * move charges to its parent.
2704  */
2705 
2706 static int mem_cgroup_move_parent(struct page *page,
2707 				  struct page_cgroup *pc,
2708 				  struct mem_cgroup *child)
2709 {
2710 	struct mem_cgroup *parent;
2711 	unsigned int nr_pages;
2712 	unsigned long uninitialized_var(flags);
2713 	int ret;
2714 
2715 	/* Is ROOT ? */
2716 	if (mem_cgroup_is_root(child))
2717 		return -EINVAL;
2718 
2719 	ret = -EBUSY;
2720 	if (!get_page_unless_zero(page))
2721 		goto out;
2722 	if (isolate_lru_page(page))
2723 		goto put;
2724 
2725 	nr_pages = hpage_nr_pages(page);
2726 
2727 	parent = parent_mem_cgroup(child);
2728 	/*
2729 	 * If no parent, move charges to root cgroup.
2730 	 */
2731 	if (!parent)
2732 		parent = root_mem_cgroup;
2733 
2734 	if (nr_pages > 1)
2735 		flags = compound_lock_irqsave(page);
2736 
2737 	ret = mem_cgroup_move_account(page, nr_pages,
2738 				pc, child, parent);
2739 	if (!ret)
2740 		__mem_cgroup_cancel_local_charge(child, nr_pages);
2741 
2742 	if (nr_pages > 1)
2743 		compound_unlock_irqrestore(page, flags);
2744 	putback_lru_page(page);
2745 put:
2746 	put_page(page);
2747 out:
2748 	return ret;
2749 }
2750 
2751 /*
2752  * Charge the memory controller for page usage.
2753  * Return
2754  * 0 if the charge was successful
2755  * < 0 if the cgroup is over its limit
2756  */
2757 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2758 				gfp_t gfp_mask, enum charge_type ctype)
2759 {
2760 	struct mem_cgroup *memcg = NULL;
2761 	unsigned int nr_pages = 1;
2762 	bool oom = true;
2763 	int ret;
2764 
2765 	if (PageTransHuge(page)) {
2766 		nr_pages <<= compound_order(page);
2767 		VM_BUG_ON(!PageTransHuge(page));
2768 		/*
2769 		 * Never OOM-kill a process for a huge page.  The
2770 		 * fault handler will fall back to regular pages.
2771 		 */
2772 		oom = false;
2773 	}
2774 
2775 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2776 	if (ret == -ENOMEM)
2777 		return ret;
2778 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2779 	return 0;
2780 }
2781 
2782 int mem_cgroup_newpage_charge(struct page *page,
2783 			      struct mm_struct *mm, gfp_t gfp_mask)
2784 {
2785 	if (mem_cgroup_disabled())
2786 		return 0;
2787 	VM_BUG_ON(page_mapped(page));
2788 	VM_BUG_ON(page->mapping && !PageAnon(page));
2789 	VM_BUG_ON(!mm);
2790 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2791 					MEM_CGROUP_CHARGE_TYPE_ANON);
2792 }
2793 
2794 /*
2795  * While swap-in, try_charge -> commit or cancel, the page is locked.
2796  * And when try_charge() successfully returns, one refcnt to memcg without
2797  * struct page_cgroup is acquired. This refcnt will be consumed by
2798  * "commit()" or removed by "cancel()"
2799  */
2800 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2801 					  struct page *page,
2802 					  gfp_t mask,
2803 					  struct mem_cgroup **memcgp)
2804 {
2805 	struct mem_cgroup *memcg;
2806 	struct page_cgroup *pc;
2807 	int ret;
2808 
2809 	pc = lookup_page_cgroup(page);
2810 	/*
2811 	 * Every swap fault against a single page tries to charge the
2812 	 * page, bail as early as possible.  shmem_unuse() encounters
2813 	 * already charged pages, too.  The USED bit is protected by
2814 	 * the page lock, which serializes swap cache removal, which
2815 	 * in turn serializes uncharging.
2816 	 */
2817 	if (PageCgroupUsed(pc))
2818 		return 0;
2819 	if (!do_swap_account)
2820 		goto charge_cur_mm;
2821 	memcg = try_get_mem_cgroup_from_page(page);
2822 	if (!memcg)
2823 		goto charge_cur_mm;
2824 	*memcgp = memcg;
2825 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2826 	css_put(&memcg->css);
2827 	if (ret == -EINTR)
2828 		ret = 0;
2829 	return ret;
2830 charge_cur_mm:
2831 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2832 	if (ret == -EINTR)
2833 		ret = 0;
2834 	return ret;
2835 }
2836 
2837 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2838 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2839 {
2840 	*memcgp = NULL;
2841 	if (mem_cgroup_disabled())
2842 		return 0;
2843 	/*
2844 	 * A racing thread's fault, or swapoff, may have already
2845 	 * updated the pte, and even removed page from swap cache: in
2846 	 * those cases unuse_pte()'s pte_same() test will fail; but
2847 	 * there's also a KSM case which does need to charge the page.
2848 	 */
2849 	if (!PageSwapCache(page)) {
2850 		int ret;
2851 
2852 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2853 		if (ret == -EINTR)
2854 			ret = 0;
2855 		return ret;
2856 	}
2857 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2858 }
2859 
2860 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2861 {
2862 	if (mem_cgroup_disabled())
2863 		return;
2864 	if (!memcg)
2865 		return;
2866 	__mem_cgroup_cancel_charge(memcg, 1);
2867 }
2868 
2869 static void
2870 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2871 					enum charge_type ctype)
2872 {
2873 	if (mem_cgroup_disabled())
2874 		return;
2875 	if (!memcg)
2876 		return;
2877 	cgroup_exclude_rmdir(&memcg->css);
2878 
2879 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2880 	/*
2881 	 * Now swap is on-memory. This means this page may be
2882 	 * counted both as mem and swap....double count.
2883 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2884 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2885 	 * may call delete_from_swap_cache() before reach here.
2886 	 */
2887 	if (do_swap_account && PageSwapCache(page)) {
2888 		swp_entry_t ent = {.val = page_private(page)};
2889 		mem_cgroup_uncharge_swap(ent);
2890 	}
2891 	/*
2892 	 * At swapin, we may charge account against cgroup which has no tasks.
2893 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2894 	 * In that case, we need to call pre_destroy() again. check it here.
2895 	 */
2896 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2897 }
2898 
2899 void mem_cgroup_commit_charge_swapin(struct page *page,
2900 				     struct mem_cgroup *memcg)
2901 {
2902 	__mem_cgroup_commit_charge_swapin(page, memcg,
2903 					  MEM_CGROUP_CHARGE_TYPE_ANON);
2904 }
2905 
2906 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2907 				gfp_t gfp_mask)
2908 {
2909 	struct mem_cgroup *memcg = NULL;
2910 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2911 	int ret;
2912 
2913 	if (mem_cgroup_disabled())
2914 		return 0;
2915 	if (PageCompound(page))
2916 		return 0;
2917 
2918 	if (!PageSwapCache(page))
2919 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2920 	else { /* page is swapcache/shmem */
2921 		ret = __mem_cgroup_try_charge_swapin(mm, page,
2922 						     gfp_mask, &memcg);
2923 		if (!ret)
2924 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2925 	}
2926 	return ret;
2927 }
2928 
2929 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2930 				   unsigned int nr_pages,
2931 				   const enum charge_type ctype)
2932 {
2933 	struct memcg_batch_info *batch = NULL;
2934 	bool uncharge_memsw = true;
2935 
2936 	/* If swapout, usage of swap doesn't decrease */
2937 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2938 		uncharge_memsw = false;
2939 
2940 	batch = &current->memcg_batch;
2941 	/*
2942 	 * In usual, we do css_get() when we remember memcg pointer.
2943 	 * But in this case, we keep res->usage until end of a series of
2944 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2945 	 */
2946 	if (!batch->memcg)
2947 		batch->memcg = memcg;
2948 	/*
2949 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2950 	 * In those cases, all pages freed continuously can be expected to be in
2951 	 * the same cgroup and we have chance to coalesce uncharges.
2952 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2953 	 * because we want to do uncharge as soon as possible.
2954 	 */
2955 
2956 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2957 		goto direct_uncharge;
2958 
2959 	if (nr_pages > 1)
2960 		goto direct_uncharge;
2961 
2962 	/*
2963 	 * In typical case, batch->memcg == mem. This means we can
2964 	 * merge a series of uncharges to an uncharge of res_counter.
2965 	 * If not, we uncharge res_counter ony by one.
2966 	 */
2967 	if (batch->memcg != memcg)
2968 		goto direct_uncharge;
2969 	/* remember freed charge and uncharge it later */
2970 	batch->nr_pages++;
2971 	if (uncharge_memsw)
2972 		batch->memsw_nr_pages++;
2973 	return;
2974 direct_uncharge:
2975 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2976 	if (uncharge_memsw)
2977 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2978 	if (unlikely(batch->memcg != memcg))
2979 		memcg_oom_recover(memcg);
2980 }
2981 
2982 /*
2983  * uncharge if !page_mapped(page)
2984  */
2985 static struct mem_cgroup *
2986 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2987 			     bool end_migration)
2988 {
2989 	struct mem_cgroup *memcg = NULL;
2990 	unsigned int nr_pages = 1;
2991 	struct page_cgroup *pc;
2992 	bool anon;
2993 
2994 	if (mem_cgroup_disabled())
2995 		return NULL;
2996 
2997 	VM_BUG_ON(PageSwapCache(page));
2998 
2999 	if (PageTransHuge(page)) {
3000 		nr_pages <<= compound_order(page);
3001 		VM_BUG_ON(!PageTransHuge(page));
3002 	}
3003 	/*
3004 	 * Check if our page_cgroup is valid
3005 	 */
3006 	pc = lookup_page_cgroup(page);
3007 	if (unlikely(!PageCgroupUsed(pc)))
3008 		return NULL;
3009 
3010 	lock_page_cgroup(pc);
3011 
3012 	memcg = pc->mem_cgroup;
3013 
3014 	if (!PageCgroupUsed(pc))
3015 		goto unlock_out;
3016 
3017 	anon = PageAnon(page);
3018 
3019 	switch (ctype) {
3020 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3021 		/*
3022 		 * Generally PageAnon tells if it's the anon statistics to be
3023 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3024 		 * used before page reached the stage of being marked PageAnon.
3025 		 */
3026 		anon = true;
3027 		/* fallthrough */
3028 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3029 		/* See mem_cgroup_prepare_migration() */
3030 		if (page_mapped(page))
3031 			goto unlock_out;
3032 		/*
3033 		 * Pages under migration may not be uncharged.  But
3034 		 * end_migration() /must/ be the one uncharging the
3035 		 * unused post-migration page and so it has to call
3036 		 * here with the migration bit still set.  See the
3037 		 * res_counter handling below.
3038 		 */
3039 		if (!end_migration && PageCgroupMigration(pc))
3040 			goto unlock_out;
3041 		break;
3042 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3043 		if (!PageAnon(page)) {	/* Shared memory */
3044 			if (page->mapping && !page_is_file_cache(page))
3045 				goto unlock_out;
3046 		} else if (page_mapped(page)) /* Anon */
3047 				goto unlock_out;
3048 		break;
3049 	default:
3050 		break;
3051 	}
3052 
3053 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3054 
3055 	ClearPageCgroupUsed(pc);
3056 	/*
3057 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3058 	 * freed from LRU. This is safe because uncharged page is expected not
3059 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3060 	 * special functions.
3061 	 */
3062 
3063 	unlock_page_cgroup(pc);
3064 	/*
3065 	 * even after unlock, we have memcg->res.usage here and this memcg
3066 	 * will never be freed.
3067 	 */
3068 	memcg_check_events(memcg, page);
3069 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3070 		mem_cgroup_swap_statistics(memcg, true);
3071 		mem_cgroup_get(memcg);
3072 	}
3073 	/*
3074 	 * Migration does not charge the res_counter for the
3075 	 * replacement page, so leave it alone when phasing out the
3076 	 * page that is unused after the migration.
3077 	 */
3078 	if (!end_migration && !mem_cgroup_is_root(memcg))
3079 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3080 
3081 	return memcg;
3082 
3083 unlock_out:
3084 	unlock_page_cgroup(pc);
3085 	return NULL;
3086 }
3087 
3088 void mem_cgroup_uncharge_page(struct page *page)
3089 {
3090 	/* early check. */
3091 	if (page_mapped(page))
3092 		return;
3093 	VM_BUG_ON(page->mapping && !PageAnon(page));
3094 	if (PageSwapCache(page))
3095 		return;
3096 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3097 }
3098 
3099 void mem_cgroup_uncharge_cache_page(struct page *page)
3100 {
3101 	VM_BUG_ON(page_mapped(page));
3102 	VM_BUG_ON(page->mapping);
3103 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3104 }
3105 
3106 /*
3107  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3108  * In that cases, pages are freed continuously and we can expect pages
3109  * are in the same memcg. All these calls itself limits the number of
3110  * pages freed at once, then uncharge_start/end() is called properly.
3111  * This may be called prural(2) times in a context,
3112  */
3113 
3114 void mem_cgroup_uncharge_start(void)
3115 {
3116 	current->memcg_batch.do_batch++;
3117 	/* We can do nest. */
3118 	if (current->memcg_batch.do_batch == 1) {
3119 		current->memcg_batch.memcg = NULL;
3120 		current->memcg_batch.nr_pages = 0;
3121 		current->memcg_batch.memsw_nr_pages = 0;
3122 	}
3123 }
3124 
3125 void mem_cgroup_uncharge_end(void)
3126 {
3127 	struct memcg_batch_info *batch = &current->memcg_batch;
3128 
3129 	if (!batch->do_batch)
3130 		return;
3131 
3132 	batch->do_batch--;
3133 	if (batch->do_batch) /* If stacked, do nothing. */
3134 		return;
3135 
3136 	if (!batch->memcg)
3137 		return;
3138 	/*
3139 	 * This "batch->memcg" is valid without any css_get/put etc...
3140 	 * bacause we hide charges behind us.
3141 	 */
3142 	if (batch->nr_pages)
3143 		res_counter_uncharge(&batch->memcg->res,
3144 				     batch->nr_pages * PAGE_SIZE);
3145 	if (batch->memsw_nr_pages)
3146 		res_counter_uncharge(&batch->memcg->memsw,
3147 				     batch->memsw_nr_pages * PAGE_SIZE);
3148 	memcg_oom_recover(batch->memcg);
3149 	/* forget this pointer (for sanity check) */
3150 	batch->memcg = NULL;
3151 }
3152 
3153 #ifdef CONFIG_SWAP
3154 /*
3155  * called after __delete_from_swap_cache() and drop "page" account.
3156  * memcg information is recorded to swap_cgroup of "ent"
3157  */
3158 void
3159 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3160 {
3161 	struct mem_cgroup *memcg;
3162 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3163 
3164 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3165 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3166 
3167 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3168 
3169 	/*
3170 	 * record memcg information,  if swapout && memcg != NULL,
3171 	 * mem_cgroup_get() was called in uncharge().
3172 	 */
3173 	if (do_swap_account && swapout && memcg)
3174 		swap_cgroup_record(ent, css_id(&memcg->css));
3175 }
3176 #endif
3177 
3178 #ifdef CONFIG_MEMCG_SWAP
3179 /*
3180  * called from swap_entry_free(). remove record in swap_cgroup and
3181  * uncharge "memsw" account.
3182  */
3183 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3184 {
3185 	struct mem_cgroup *memcg;
3186 	unsigned short id;
3187 
3188 	if (!do_swap_account)
3189 		return;
3190 
3191 	id = swap_cgroup_record(ent, 0);
3192 	rcu_read_lock();
3193 	memcg = mem_cgroup_lookup(id);
3194 	if (memcg) {
3195 		/*
3196 		 * We uncharge this because swap is freed.
3197 		 * This memcg can be obsolete one. We avoid calling css_tryget
3198 		 */
3199 		if (!mem_cgroup_is_root(memcg))
3200 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3201 		mem_cgroup_swap_statistics(memcg, false);
3202 		mem_cgroup_put(memcg);
3203 	}
3204 	rcu_read_unlock();
3205 }
3206 
3207 /**
3208  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3209  * @entry: swap entry to be moved
3210  * @from:  mem_cgroup which the entry is moved from
3211  * @to:  mem_cgroup which the entry is moved to
3212  *
3213  * It succeeds only when the swap_cgroup's record for this entry is the same
3214  * as the mem_cgroup's id of @from.
3215  *
3216  * Returns 0 on success, -EINVAL on failure.
3217  *
3218  * The caller must have charged to @to, IOW, called res_counter_charge() about
3219  * both res and memsw, and called css_get().
3220  */
3221 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3222 				struct mem_cgroup *from, struct mem_cgroup *to)
3223 {
3224 	unsigned short old_id, new_id;
3225 
3226 	old_id = css_id(&from->css);
3227 	new_id = css_id(&to->css);
3228 
3229 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3230 		mem_cgroup_swap_statistics(from, false);
3231 		mem_cgroup_swap_statistics(to, true);
3232 		/*
3233 		 * This function is only called from task migration context now.
3234 		 * It postpones res_counter and refcount handling till the end
3235 		 * of task migration(mem_cgroup_clear_mc()) for performance
3236 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3237 		 * because if the process that has been moved to @to does
3238 		 * swap-in, the refcount of @to might be decreased to 0.
3239 		 */
3240 		mem_cgroup_get(to);
3241 		return 0;
3242 	}
3243 	return -EINVAL;
3244 }
3245 #else
3246 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3247 				struct mem_cgroup *from, struct mem_cgroup *to)
3248 {
3249 	return -EINVAL;
3250 }
3251 #endif
3252 
3253 /*
3254  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3255  * page belongs to.
3256  */
3257 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3258 				  struct mem_cgroup **memcgp)
3259 {
3260 	struct mem_cgroup *memcg = NULL;
3261 	struct page_cgroup *pc;
3262 	enum charge_type ctype;
3263 
3264 	*memcgp = NULL;
3265 
3266 	VM_BUG_ON(PageTransHuge(page));
3267 	if (mem_cgroup_disabled())
3268 		return;
3269 
3270 	pc = lookup_page_cgroup(page);
3271 	lock_page_cgroup(pc);
3272 	if (PageCgroupUsed(pc)) {
3273 		memcg = pc->mem_cgroup;
3274 		css_get(&memcg->css);
3275 		/*
3276 		 * At migrating an anonymous page, its mapcount goes down
3277 		 * to 0 and uncharge() will be called. But, even if it's fully
3278 		 * unmapped, migration may fail and this page has to be
3279 		 * charged again. We set MIGRATION flag here and delay uncharge
3280 		 * until end_migration() is called
3281 		 *
3282 		 * Corner Case Thinking
3283 		 * A)
3284 		 * When the old page was mapped as Anon and it's unmap-and-freed
3285 		 * while migration was ongoing.
3286 		 * If unmap finds the old page, uncharge() of it will be delayed
3287 		 * until end_migration(). If unmap finds a new page, it's
3288 		 * uncharged when it make mapcount to be 1->0. If unmap code
3289 		 * finds swap_migration_entry, the new page will not be mapped
3290 		 * and end_migration() will find it(mapcount==0).
3291 		 *
3292 		 * B)
3293 		 * When the old page was mapped but migraion fails, the kernel
3294 		 * remaps it. A charge for it is kept by MIGRATION flag even
3295 		 * if mapcount goes down to 0. We can do remap successfully
3296 		 * without charging it again.
3297 		 *
3298 		 * C)
3299 		 * The "old" page is under lock_page() until the end of
3300 		 * migration, so, the old page itself will not be swapped-out.
3301 		 * If the new page is swapped out before end_migraton, our
3302 		 * hook to usual swap-out path will catch the event.
3303 		 */
3304 		if (PageAnon(page))
3305 			SetPageCgroupMigration(pc);
3306 	}
3307 	unlock_page_cgroup(pc);
3308 	/*
3309 	 * If the page is not charged at this point,
3310 	 * we return here.
3311 	 */
3312 	if (!memcg)
3313 		return;
3314 
3315 	*memcgp = memcg;
3316 	/*
3317 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3318 	 * is called before end_migration, we can catch all events on this new
3319 	 * page. In the case new page is migrated but not remapped, new page's
3320 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3321 	 */
3322 	if (PageAnon(page))
3323 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3324 	else
3325 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3326 	/*
3327 	 * The page is committed to the memcg, but it's not actually
3328 	 * charged to the res_counter since we plan on replacing the
3329 	 * old one and only one page is going to be left afterwards.
3330 	 */
3331 	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3332 }
3333 
3334 /* remove redundant charge if migration failed*/
3335 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3336 	struct page *oldpage, struct page *newpage, bool migration_ok)
3337 {
3338 	struct page *used, *unused;
3339 	struct page_cgroup *pc;
3340 	bool anon;
3341 
3342 	if (!memcg)
3343 		return;
3344 	/* blocks rmdir() */
3345 	cgroup_exclude_rmdir(&memcg->css);
3346 	if (!migration_ok) {
3347 		used = oldpage;
3348 		unused = newpage;
3349 	} else {
3350 		used = newpage;
3351 		unused = oldpage;
3352 	}
3353 	anon = PageAnon(used);
3354 	__mem_cgroup_uncharge_common(unused,
3355 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3356 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
3357 				     true);
3358 	css_put(&memcg->css);
3359 	/*
3360 	 * We disallowed uncharge of pages under migration because mapcount
3361 	 * of the page goes down to zero, temporarly.
3362 	 * Clear the flag and check the page should be charged.
3363 	 */
3364 	pc = lookup_page_cgroup(oldpage);
3365 	lock_page_cgroup(pc);
3366 	ClearPageCgroupMigration(pc);
3367 	unlock_page_cgroup(pc);
3368 
3369 	/*
3370 	 * If a page is a file cache, radix-tree replacement is very atomic
3371 	 * and we can skip this check. When it was an Anon page, its mapcount
3372 	 * goes down to 0. But because we added MIGRATION flage, it's not
3373 	 * uncharged yet. There are several case but page->mapcount check
3374 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3375 	 * check. (see prepare_charge() also)
3376 	 */
3377 	if (anon)
3378 		mem_cgroup_uncharge_page(used);
3379 	/*
3380 	 * At migration, we may charge account against cgroup which has no
3381 	 * tasks.
3382 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3383 	 * In that case, we need to call pre_destroy() again. check it here.
3384 	 */
3385 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3386 }
3387 
3388 /*
3389  * At replace page cache, newpage is not under any memcg but it's on
3390  * LRU. So, this function doesn't touch res_counter but handles LRU
3391  * in correct way. Both pages are locked so we cannot race with uncharge.
3392  */
3393 void mem_cgroup_replace_page_cache(struct page *oldpage,
3394 				  struct page *newpage)
3395 {
3396 	struct mem_cgroup *memcg = NULL;
3397 	struct page_cgroup *pc;
3398 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3399 
3400 	if (mem_cgroup_disabled())
3401 		return;
3402 
3403 	pc = lookup_page_cgroup(oldpage);
3404 	/* fix accounting on old pages */
3405 	lock_page_cgroup(pc);
3406 	if (PageCgroupUsed(pc)) {
3407 		memcg = pc->mem_cgroup;
3408 		mem_cgroup_charge_statistics(memcg, false, -1);
3409 		ClearPageCgroupUsed(pc);
3410 	}
3411 	unlock_page_cgroup(pc);
3412 
3413 	/*
3414 	 * When called from shmem_replace_page(), in some cases the
3415 	 * oldpage has already been charged, and in some cases not.
3416 	 */
3417 	if (!memcg)
3418 		return;
3419 	/*
3420 	 * Even if newpage->mapping was NULL before starting replacement,
3421 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3422 	 * LRU while we overwrite pc->mem_cgroup.
3423 	 */
3424 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3425 }
3426 
3427 #ifdef CONFIG_DEBUG_VM
3428 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3429 {
3430 	struct page_cgroup *pc;
3431 
3432 	pc = lookup_page_cgroup(page);
3433 	/*
3434 	 * Can be NULL while feeding pages into the page allocator for
3435 	 * the first time, i.e. during boot or memory hotplug;
3436 	 * or when mem_cgroup_disabled().
3437 	 */
3438 	if (likely(pc) && PageCgroupUsed(pc))
3439 		return pc;
3440 	return NULL;
3441 }
3442 
3443 bool mem_cgroup_bad_page_check(struct page *page)
3444 {
3445 	if (mem_cgroup_disabled())
3446 		return false;
3447 
3448 	return lookup_page_cgroup_used(page) != NULL;
3449 }
3450 
3451 void mem_cgroup_print_bad_page(struct page *page)
3452 {
3453 	struct page_cgroup *pc;
3454 
3455 	pc = lookup_page_cgroup_used(page);
3456 	if (pc) {
3457 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3458 		       pc, pc->flags, pc->mem_cgroup);
3459 	}
3460 }
3461 #endif
3462 
3463 static DEFINE_MUTEX(set_limit_mutex);
3464 
3465 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3466 				unsigned long long val)
3467 {
3468 	int retry_count;
3469 	u64 memswlimit, memlimit;
3470 	int ret = 0;
3471 	int children = mem_cgroup_count_children(memcg);
3472 	u64 curusage, oldusage;
3473 	int enlarge;
3474 
3475 	/*
3476 	 * For keeping hierarchical_reclaim simple, how long we should retry
3477 	 * is depends on callers. We set our retry-count to be function
3478 	 * of # of children which we should visit in this loop.
3479 	 */
3480 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3481 
3482 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3483 
3484 	enlarge = 0;
3485 	while (retry_count) {
3486 		if (signal_pending(current)) {
3487 			ret = -EINTR;
3488 			break;
3489 		}
3490 		/*
3491 		 * Rather than hide all in some function, I do this in
3492 		 * open coded manner. You see what this really does.
3493 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3494 		 */
3495 		mutex_lock(&set_limit_mutex);
3496 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3497 		if (memswlimit < val) {
3498 			ret = -EINVAL;
3499 			mutex_unlock(&set_limit_mutex);
3500 			break;
3501 		}
3502 
3503 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3504 		if (memlimit < val)
3505 			enlarge = 1;
3506 
3507 		ret = res_counter_set_limit(&memcg->res, val);
3508 		if (!ret) {
3509 			if (memswlimit == val)
3510 				memcg->memsw_is_minimum = true;
3511 			else
3512 				memcg->memsw_is_minimum = false;
3513 		}
3514 		mutex_unlock(&set_limit_mutex);
3515 
3516 		if (!ret)
3517 			break;
3518 
3519 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3520 				   MEM_CGROUP_RECLAIM_SHRINK);
3521 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3522 		/* Usage is reduced ? */
3523   		if (curusage >= oldusage)
3524 			retry_count--;
3525 		else
3526 			oldusage = curusage;
3527 	}
3528 	if (!ret && enlarge)
3529 		memcg_oom_recover(memcg);
3530 
3531 	return ret;
3532 }
3533 
3534 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3535 					unsigned long long val)
3536 {
3537 	int retry_count;
3538 	u64 memlimit, memswlimit, oldusage, curusage;
3539 	int children = mem_cgroup_count_children(memcg);
3540 	int ret = -EBUSY;
3541 	int enlarge = 0;
3542 
3543 	/* see mem_cgroup_resize_res_limit */
3544  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3545 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3546 	while (retry_count) {
3547 		if (signal_pending(current)) {
3548 			ret = -EINTR;
3549 			break;
3550 		}
3551 		/*
3552 		 * Rather than hide all in some function, I do this in
3553 		 * open coded manner. You see what this really does.
3554 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3555 		 */
3556 		mutex_lock(&set_limit_mutex);
3557 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3558 		if (memlimit > val) {
3559 			ret = -EINVAL;
3560 			mutex_unlock(&set_limit_mutex);
3561 			break;
3562 		}
3563 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3564 		if (memswlimit < val)
3565 			enlarge = 1;
3566 		ret = res_counter_set_limit(&memcg->memsw, val);
3567 		if (!ret) {
3568 			if (memlimit == val)
3569 				memcg->memsw_is_minimum = true;
3570 			else
3571 				memcg->memsw_is_minimum = false;
3572 		}
3573 		mutex_unlock(&set_limit_mutex);
3574 
3575 		if (!ret)
3576 			break;
3577 
3578 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3579 				   MEM_CGROUP_RECLAIM_NOSWAP |
3580 				   MEM_CGROUP_RECLAIM_SHRINK);
3581 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3582 		/* Usage is reduced ? */
3583 		if (curusage >= oldusage)
3584 			retry_count--;
3585 		else
3586 			oldusage = curusage;
3587 	}
3588 	if (!ret && enlarge)
3589 		memcg_oom_recover(memcg);
3590 	return ret;
3591 }
3592 
3593 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3594 					    gfp_t gfp_mask,
3595 					    unsigned long *total_scanned)
3596 {
3597 	unsigned long nr_reclaimed = 0;
3598 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3599 	unsigned long reclaimed;
3600 	int loop = 0;
3601 	struct mem_cgroup_tree_per_zone *mctz;
3602 	unsigned long long excess;
3603 	unsigned long nr_scanned;
3604 
3605 	if (order > 0)
3606 		return 0;
3607 
3608 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3609 	/*
3610 	 * This loop can run a while, specially if mem_cgroup's continuously
3611 	 * keep exceeding their soft limit and putting the system under
3612 	 * pressure
3613 	 */
3614 	do {
3615 		if (next_mz)
3616 			mz = next_mz;
3617 		else
3618 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3619 		if (!mz)
3620 			break;
3621 
3622 		nr_scanned = 0;
3623 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3624 						    gfp_mask, &nr_scanned);
3625 		nr_reclaimed += reclaimed;
3626 		*total_scanned += nr_scanned;
3627 		spin_lock(&mctz->lock);
3628 
3629 		/*
3630 		 * If we failed to reclaim anything from this memory cgroup
3631 		 * it is time to move on to the next cgroup
3632 		 */
3633 		next_mz = NULL;
3634 		if (!reclaimed) {
3635 			do {
3636 				/*
3637 				 * Loop until we find yet another one.
3638 				 *
3639 				 * By the time we get the soft_limit lock
3640 				 * again, someone might have aded the
3641 				 * group back on the RB tree. Iterate to
3642 				 * make sure we get a different mem.
3643 				 * mem_cgroup_largest_soft_limit_node returns
3644 				 * NULL if no other cgroup is present on
3645 				 * the tree
3646 				 */
3647 				next_mz =
3648 				__mem_cgroup_largest_soft_limit_node(mctz);
3649 				if (next_mz == mz)
3650 					css_put(&next_mz->memcg->css);
3651 				else /* next_mz == NULL or other memcg */
3652 					break;
3653 			} while (1);
3654 		}
3655 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3656 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3657 		/*
3658 		 * One school of thought says that we should not add
3659 		 * back the node to the tree if reclaim returns 0.
3660 		 * But our reclaim could return 0, simply because due
3661 		 * to priority we are exposing a smaller subset of
3662 		 * memory to reclaim from. Consider this as a longer
3663 		 * term TODO.
3664 		 */
3665 		/* If excess == 0, no tree ops */
3666 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3667 		spin_unlock(&mctz->lock);
3668 		css_put(&mz->memcg->css);
3669 		loop++;
3670 		/*
3671 		 * Could not reclaim anything and there are no more
3672 		 * mem cgroups to try or we seem to be looping without
3673 		 * reclaiming anything.
3674 		 */
3675 		if (!nr_reclaimed &&
3676 			(next_mz == NULL ||
3677 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3678 			break;
3679 	} while (!nr_reclaimed);
3680 	if (next_mz)
3681 		css_put(&next_mz->memcg->css);
3682 	return nr_reclaimed;
3683 }
3684 
3685 /*
3686  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3687  * reclaim the pages page themselves - it just removes the page_cgroups.
3688  * Returns true if some page_cgroups were not freed, indicating that the caller
3689  * must retry this operation.
3690  */
3691 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3692 				int node, int zid, enum lru_list lru)
3693 {
3694 	struct mem_cgroup_per_zone *mz;
3695 	unsigned long flags, loop;
3696 	struct list_head *list;
3697 	struct page *busy;
3698 	struct zone *zone;
3699 
3700 	zone = &NODE_DATA(node)->node_zones[zid];
3701 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3702 	list = &mz->lruvec.lists[lru];
3703 
3704 	loop = mz->lru_size[lru];
3705 	/* give some margin against EBUSY etc...*/
3706 	loop += 256;
3707 	busy = NULL;
3708 	while (loop--) {
3709 		struct page_cgroup *pc;
3710 		struct page *page;
3711 
3712 		spin_lock_irqsave(&zone->lru_lock, flags);
3713 		if (list_empty(list)) {
3714 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3715 			break;
3716 		}
3717 		page = list_entry(list->prev, struct page, lru);
3718 		if (busy == page) {
3719 			list_move(&page->lru, list);
3720 			busy = NULL;
3721 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3722 			continue;
3723 		}
3724 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3725 
3726 		pc = lookup_page_cgroup(page);
3727 
3728 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3729 			/* found lock contention or "pc" is obsolete. */
3730 			busy = page;
3731 			cond_resched();
3732 		} else
3733 			busy = NULL;
3734 	}
3735 	return !list_empty(list);
3736 }
3737 
3738 /*
3739  * make mem_cgroup's charge to be 0 if there is no task.
3740  * This enables deleting this mem_cgroup.
3741  */
3742 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3743 {
3744 	int ret;
3745 	int node, zid, shrink;
3746 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3747 	struct cgroup *cgrp = memcg->css.cgroup;
3748 
3749 	css_get(&memcg->css);
3750 
3751 	shrink = 0;
3752 	/* should free all ? */
3753 	if (free_all)
3754 		goto try_to_free;
3755 move_account:
3756 	do {
3757 		ret = -EBUSY;
3758 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3759 			goto out;
3760 		/* This is for making all *used* pages to be on LRU. */
3761 		lru_add_drain_all();
3762 		drain_all_stock_sync(memcg);
3763 		ret = 0;
3764 		mem_cgroup_start_move(memcg);
3765 		for_each_node_state(node, N_HIGH_MEMORY) {
3766 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3767 				enum lru_list lru;
3768 				for_each_lru(lru) {
3769 					ret = mem_cgroup_force_empty_list(memcg,
3770 							node, zid, lru);
3771 					if (ret)
3772 						break;
3773 				}
3774 			}
3775 			if (ret)
3776 				break;
3777 		}
3778 		mem_cgroup_end_move(memcg);
3779 		memcg_oom_recover(memcg);
3780 		cond_resched();
3781 	/* "ret" should also be checked to ensure all lists are empty. */
3782 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3783 out:
3784 	css_put(&memcg->css);
3785 	return ret;
3786 
3787 try_to_free:
3788 	/* returns EBUSY if there is a task or if we come here twice. */
3789 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3790 		ret = -EBUSY;
3791 		goto out;
3792 	}
3793 	/* we call try-to-free pages for make this cgroup empty */
3794 	lru_add_drain_all();
3795 	/* try to free all pages in this cgroup */
3796 	shrink = 1;
3797 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3798 		int progress;
3799 
3800 		if (signal_pending(current)) {
3801 			ret = -EINTR;
3802 			goto out;
3803 		}
3804 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3805 						false);
3806 		if (!progress) {
3807 			nr_retries--;
3808 			/* maybe some writeback is necessary */
3809 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3810 		}
3811 
3812 	}
3813 	lru_add_drain();
3814 	/* try move_account...there may be some *locked* pages. */
3815 	goto move_account;
3816 }
3817 
3818 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3819 {
3820 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3821 }
3822 
3823 
3824 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3825 {
3826 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3827 }
3828 
3829 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3830 					u64 val)
3831 {
3832 	int retval = 0;
3833 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3834 	struct cgroup *parent = cont->parent;
3835 	struct mem_cgroup *parent_memcg = NULL;
3836 
3837 	if (parent)
3838 		parent_memcg = mem_cgroup_from_cont(parent);
3839 
3840 	cgroup_lock();
3841 
3842 	if (memcg->use_hierarchy == val)
3843 		goto out;
3844 
3845 	/*
3846 	 * If parent's use_hierarchy is set, we can't make any modifications
3847 	 * in the child subtrees. If it is unset, then the change can
3848 	 * occur, provided the current cgroup has no children.
3849 	 *
3850 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3851 	 * set if there are no children.
3852 	 */
3853 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3854 				(val == 1 || val == 0)) {
3855 		if (list_empty(&cont->children))
3856 			memcg->use_hierarchy = val;
3857 		else
3858 			retval = -EBUSY;
3859 	} else
3860 		retval = -EINVAL;
3861 
3862 out:
3863 	cgroup_unlock();
3864 
3865 	return retval;
3866 }
3867 
3868 
3869 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3870 					       enum mem_cgroup_stat_index idx)
3871 {
3872 	struct mem_cgroup *iter;
3873 	long val = 0;
3874 
3875 	/* Per-cpu values can be negative, use a signed accumulator */
3876 	for_each_mem_cgroup_tree(iter, memcg)
3877 		val += mem_cgroup_read_stat(iter, idx);
3878 
3879 	if (val < 0) /* race ? */
3880 		val = 0;
3881 	return val;
3882 }
3883 
3884 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3885 {
3886 	u64 val;
3887 
3888 	if (!mem_cgroup_is_root(memcg)) {
3889 		if (!swap)
3890 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3891 		else
3892 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3893 	}
3894 
3895 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3896 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3897 
3898 	if (swap)
3899 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3900 
3901 	return val << PAGE_SHIFT;
3902 }
3903 
3904 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3905 			       struct file *file, char __user *buf,
3906 			       size_t nbytes, loff_t *ppos)
3907 {
3908 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3909 	char str[64];
3910 	u64 val;
3911 	int type, name, len;
3912 
3913 	type = MEMFILE_TYPE(cft->private);
3914 	name = MEMFILE_ATTR(cft->private);
3915 
3916 	if (!do_swap_account && type == _MEMSWAP)
3917 		return -EOPNOTSUPP;
3918 
3919 	switch (type) {
3920 	case _MEM:
3921 		if (name == RES_USAGE)
3922 			val = mem_cgroup_usage(memcg, false);
3923 		else
3924 			val = res_counter_read_u64(&memcg->res, name);
3925 		break;
3926 	case _MEMSWAP:
3927 		if (name == RES_USAGE)
3928 			val = mem_cgroup_usage(memcg, true);
3929 		else
3930 			val = res_counter_read_u64(&memcg->memsw, name);
3931 		break;
3932 	default:
3933 		BUG();
3934 	}
3935 
3936 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3937 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3938 }
3939 /*
3940  * The user of this function is...
3941  * RES_LIMIT.
3942  */
3943 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3944 			    const char *buffer)
3945 {
3946 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3947 	int type, name;
3948 	unsigned long long val;
3949 	int ret;
3950 
3951 	type = MEMFILE_TYPE(cft->private);
3952 	name = MEMFILE_ATTR(cft->private);
3953 
3954 	if (!do_swap_account && type == _MEMSWAP)
3955 		return -EOPNOTSUPP;
3956 
3957 	switch (name) {
3958 	case RES_LIMIT:
3959 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3960 			ret = -EINVAL;
3961 			break;
3962 		}
3963 		/* This function does all necessary parse...reuse it */
3964 		ret = res_counter_memparse_write_strategy(buffer, &val);
3965 		if (ret)
3966 			break;
3967 		if (type == _MEM)
3968 			ret = mem_cgroup_resize_limit(memcg, val);
3969 		else
3970 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3971 		break;
3972 	case RES_SOFT_LIMIT:
3973 		ret = res_counter_memparse_write_strategy(buffer, &val);
3974 		if (ret)
3975 			break;
3976 		/*
3977 		 * For memsw, soft limits are hard to implement in terms
3978 		 * of semantics, for now, we support soft limits for
3979 		 * control without swap
3980 		 */
3981 		if (type == _MEM)
3982 			ret = res_counter_set_soft_limit(&memcg->res, val);
3983 		else
3984 			ret = -EINVAL;
3985 		break;
3986 	default:
3987 		ret = -EINVAL; /* should be BUG() ? */
3988 		break;
3989 	}
3990 	return ret;
3991 }
3992 
3993 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3994 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3995 {
3996 	struct cgroup *cgroup;
3997 	unsigned long long min_limit, min_memsw_limit, tmp;
3998 
3999 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4000 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4001 	cgroup = memcg->css.cgroup;
4002 	if (!memcg->use_hierarchy)
4003 		goto out;
4004 
4005 	while (cgroup->parent) {
4006 		cgroup = cgroup->parent;
4007 		memcg = mem_cgroup_from_cont(cgroup);
4008 		if (!memcg->use_hierarchy)
4009 			break;
4010 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4011 		min_limit = min(min_limit, tmp);
4012 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4013 		min_memsw_limit = min(min_memsw_limit, tmp);
4014 	}
4015 out:
4016 	*mem_limit = min_limit;
4017 	*memsw_limit = min_memsw_limit;
4018 }
4019 
4020 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4021 {
4022 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4023 	int type, name;
4024 
4025 	type = MEMFILE_TYPE(event);
4026 	name = MEMFILE_ATTR(event);
4027 
4028 	if (!do_swap_account && type == _MEMSWAP)
4029 		return -EOPNOTSUPP;
4030 
4031 	switch (name) {
4032 	case RES_MAX_USAGE:
4033 		if (type == _MEM)
4034 			res_counter_reset_max(&memcg->res);
4035 		else
4036 			res_counter_reset_max(&memcg->memsw);
4037 		break;
4038 	case RES_FAILCNT:
4039 		if (type == _MEM)
4040 			res_counter_reset_failcnt(&memcg->res);
4041 		else
4042 			res_counter_reset_failcnt(&memcg->memsw);
4043 		break;
4044 	}
4045 
4046 	return 0;
4047 }
4048 
4049 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4050 					struct cftype *cft)
4051 {
4052 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4053 }
4054 
4055 #ifdef CONFIG_MMU
4056 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4057 					struct cftype *cft, u64 val)
4058 {
4059 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4060 
4061 	if (val >= (1 << NR_MOVE_TYPE))
4062 		return -EINVAL;
4063 	/*
4064 	 * We check this value several times in both in can_attach() and
4065 	 * attach(), so we need cgroup lock to prevent this value from being
4066 	 * inconsistent.
4067 	 */
4068 	cgroup_lock();
4069 	memcg->move_charge_at_immigrate = val;
4070 	cgroup_unlock();
4071 
4072 	return 0;
4073 }
4074 #else
4075 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4076 					struct cftype *cft, u64 val)
4077 {
4078 	return -ENOSYS;
4079 }
4080 #endif
4081 
4082 #ifdef CONFIG_NUMA
4083 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4084 				      struct seq_file *m)
4085 {
4086 	int nid;
4087 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4088 	unsigned long node_nr;
4089 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4090 
4091 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4092 	seq_printf(m, "total=%lu", total_nr);
4093 	for_each_node_state(nid, N_HIGH_MEMORY) {
4094 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4095 		seq_printf(m, " N%d=%lu", nid, node_nr);
4096 	}
4097 	seq_putc(m, '\n');
4098 
4099 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4100 	seq_printf(m, "file=%lu", file_nr);
4101 	for_each_node_state(nid, N_HIGH_MEMORY) {
4102 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4103 				LRU_ALL_FILE);
4104 		seq_printf(m, " N%d=%lu", nid, node_nr);
4105 	}
4106 	seq_putc(m, '\n');
4107 
4108 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4109 	seq_printf(m, "anon=%lu", anon_nr);
4110 	for_each_node_state(nid, N_HIGH_MEMORY) {
4111 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4112 				LRU_ALL_ANON);
4113 		seq_printf(m, " N%d=%lu", nid, node_nr);
4114 	}
4115 	seq_putc(m, '\n');
4116 
4117 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4118 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4119 	for_each_node_state(nid, N_HIGH_MEMORY) {
4120 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4121 				BIT(LRU_UNEVICTABLE));
4122 		seq_printf(m, " N%d=%lu", nid, node_nr);
4123 	}
4124 	seq_putc(m, '\n');
4125 	return 0;
4126 }
4127 #endif /* CONFIG_NUMA */
4128 
4129 static const char * const mem_cgroup_lru_names[] = {
4130 	"inactive_anon",
4131 	"active_anon",
4132 	"inactive_file",
4133 	"active_file",
4134 	"unevictable",
4135 };
4136 
4137 static inline void mem_cgroup_lru_names_not_uptodate(void)
4138 {
4139 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4140 }
4141 
4142 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4143 				 struct seq_file *m)
4144 {
4145 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4146 	struct mem_cgroup *mi;
4147 	unsigned int i;
4148 
4149 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4150 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4151 			continue;
4152 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4153 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4154 	}
4155 
4156 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4157 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4158 			   mem_cgroup_read_events(memcg, i));
4159 
4160 	for (i = 0; i < NR_LRU_LISTS; i++)
4161 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4162 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4163 
4164 	/* Hierarchical information */
4165 	{
4166 		unsigned long long limit, memsw_limit;
4167 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4168 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4169 		if (do_swap_account)
4170 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4171 				   memsw_limit);
4172 	}
4173 
4174 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4175 		long long val = 0;
4176 
4177 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4178 			continue;
4179 		for_each_mem_cgroup_tree(mi, memcg)
4180 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4181 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4182 	}
4183 
4184 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4185 		unsigned long long val = 0;
4186 
4187 		for_each_mem_cgroup_tree(mi, memcg)
4188 			val += mem_cgroup_read_events(mi, i);
4189 		seq_printf(m, "total_%s %llu\n",
4190 			   mem_cgroup_events_names[i], val);
4191 	}
4192 
4193 	for (i = 0; i < NR_LRU_LISTS; i++) {
4194 		unsigned long long val = 0;
4195 
4196 		for_each_mem_cgroup_tree(mi, memcg)
4197 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4198 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4199 	}
4200 
4201 #ifdef CONFIG_DEBUG_VM
4202 	{
4203 		int nid, zid;
4204 		struct mem_cgroup_per_zone *mz;
4205 		struct zone_reclaim_stat *rstat;
4206 		unsigned long recent_rotated[2] = {0, 0};
4207 		unsigned long recent_scanned[2] = {0, 0};
4208 
4209 		for_each_online_node(nid)
4210 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4211 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4212 				rstat = &mz->lruvec.reclaim_stat;
4213 
4214 				recent_rotated[0] += rstat->recent_rotated[0];
4215 				recent_rotated[1] += rstat->recent_rotated[1];
4216 				recent_scanned[0] += rstat->recent_scanned[0];
4217 				recent_scanned[1] += rstat->recent_scanned[1];
4218 			}
4219 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4220 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4221 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4222 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4223 	}
4224 #endif
4225 
4226 	return 0;
4227 }
4228 
4229 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4230 {
4231 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4232 
4233 	return mem_cgroup_swappiness(memcg);
4234 }
4235 
4236 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4237 				       u64 val)
4238 {
4239 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4240 	struct mem_cgroup *parent;
4241 
4242 	if (val > 100)
4243 		return -EINVAL;
4244 
4245 	if (cgrp->parent == NULL)
4246 		return -EINVAL;
4247 
4248 	parent = mem_cgroup_from_cont(cgrp->parent);
4249 
4250 	cgroup_lock();
4251 
4252 	/* If under hierarchy, only empty-root can set this value */
4253 	if ((parent->use_hierarchy) ||
4254 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4255 		cgroup_unlock();
4256 		return -EINVAL;
4257 	}
4258 
4259 	memcg->swappiness = val;
4260 
4261 	cgroup_unlock();
4262 
4263 	return 0;
4264 }
4265 
4266 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4267 {
4268 	struct mem_cgroup_threshold_ary *t;
4269 	u64 usage;
4270 	int i;
4271 
4272 	rcu_read_lock();
4273 	if (!swap)
4274 		t = rcu_dereference(memcg->thresholds.primary);
4275 	else
4276 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4277 
4278 	if (!t)
4279 		goto unlock;
4280 
4281 	usage = mem_cgroup_usage(memcg, swap);
4282 
4283 	/*
4284 	 * current_threshold points to threshold just below or equal to usage.
4285 	 * If it's not true, a threshold was crossed after last
4286 	 * call of __mem_cgroup_threshold().
4287 	 */
4288 	i = t->current_threshold;
4289 
4290 	/*
4291 	 * Iterate backward over array of thresholds starting from
4292 	 * current_threshold and check if a threshold is crossed.
4293 	 * If none of thresholds below usage is crossed, we read
4294 	 * only one element of the array here.
4295 	 */
4296 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4297 		eventfd_signal(t->entries[i].eventfd, 1);
4298 
4299 	/* i = current_threshold + 1 */
4300 	i++;
4301 
4302 	/*
4303 	 * Iterate forward over array of thresholds starting from
4304 	 * current_threshold+1 and check if a threshold is crossed.
4305 	 * If none of thresholds above usage is crossed, we read
4306 	 * only one element of the array here.
4307 	 */
4308 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4309 		eventfd_signal(t->entries[i].eventfd, 1);
4310 
4311 	/* Update current_threshold */
4312 	t->current_threshold = i - 1;
4313 unlock:
4314 	rcu_read_unlock();
4315 }
4316 
4317 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4318 {
4319 	while (memcg) {
4320 		__mem_cgroup_threshold(memcg, false);
4321 		if (do_swap_account)
4322 			__mem_cgroup_threshold(memcg, true);
4323 
4324 		memcg = parent_mem_cgroup(memcg);
4325 	}
4326 }
4327 
4328 static int compare_thresholds(const void *a, const void *b)
4329 {
4330 	const struct mem_cgroup_threshold *_a = a;
4331 	const struct mem_cgroup_threshold *_b = b;
4332 
4333 	return _a->threshold - _b->threshold;
4334 }
4335 
4336 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4337 {
4338 	struct mem_cgroup_eventfd_list *ev;
4339 
4340 	list_for_each_entry(ev, &memcg->oom_notify, list)
4341 		eventfd_signal(ev->eventfd, 1);
4342 	return 0;
4343 }
4344 
4345 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4346 {
4347 	struct mem_cgroup *iter;
4348 
4349 	for_each_mem_cgroup_tree(iter, memcg)
4350 		mem_cgroup_oom_notify_cb(iter);
4351 }
4352 
4353 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4354 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4355 {
4356 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4357 	struct mem_cgroup_thresholds *thresholds;
4358 	struct mem_cgroup_threshold_ary *new;
4359 	int type = MEMFILE_TYPE(cft->private);
4360 	u64 threshold, usage;
4361 	int i, size, ret;
4362 
4363 	ret = res_counter_memparse_write_strategy(args, &threshold);
4364 	if (ret)
4365 		return ret;
4366 
4367 	mutex_lock(&memcg->thresholds_lock);
4368 
4369 	if (type == _MEM)
4370 		thresholds = &memcg->thresholds;
4371 	else if (type == _MEMSWAP)
4372 		thresholds = &memcg->memsw_thresholds;
4373 	else
4374 		BUG();
4375 
4376 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4377 
4378 	/* Check if a threshold crossed before adding a new one */
4379 	if (thresholds->primary)
4380 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381 
4382 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4383 
4384 	/* Allocate memory for new array of thresholds */
4385 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4386 			GFP_KERNEL);
4387 	if (!new) {
4388 		ret = -ENOMEM;
4389 		goto unlock;
4390 	}
4391 	new->size = size;
4392 
4393 	/* Copy thresholds (if any) to new array */
4394 	if (thresholds->primary) {
4395 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4396 				sizeof(struct mem_cgroup_threshold));
4397 	}
4398 
4399 	/* Add new threshold */
4400 	new->entries[size - 1].eventfd = eventfd;
4401 	new->entries[size - 1].threshold = threshold;
4402 
4403 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4404 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4405 			compare_thresholds, NULL);
4406 
4407 	/* Find current threshold */
4408 	new->current_threshold = -1;
4409 	for (i = 0; i < size; i++) {
4410 		if (new->entries[i].threshold <= usage) {
4411 			/*
4412 			 * new->current_threshold will not be used until
4413 			 * rcu_assign_pointer(), so it's safe to increment
4414 			 * it here.
4415 			 */
4416 			++new->current_threshold;
4417 		} else
4418 			break;
4419 	}
4420 
4421 	/* Free old spare buffer and save old primary buffer as spare */
4422 	kfree(thresholds->spare);
4423 	thresholds->spare = thresholds->primary;
4424 
4425 	rcu_assign_pointer(thresholds->primary, new);
4426 
4427 	/* To be sure that nobody uses thresholds */
4428 	synchronize_rcu();
4429 
4430 unlock:
4431 	mutex_unlock(&memcg->thresholds_lock);
4432 
4433 	return ret;
4434 }
4435 
4436 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4437 	struct cftype *cft, struct eventfd_ctx *eventfd)
4438 {
4439 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4440 	struct mem_cgroup_thresholds *thresholds;
4441 	struct mem_cgroup_threshold_ary *new;
4442 	int type = MEMFILE_TYPE(cft->private);
4443 	u64 usage;
4444 	int i, j, size;
4445 
4446 	mutex_lock(&memcg->thresholds_lock);
4447 	if (type == _MEM)
4448 		thresholds = &memcg->thresholds;
4449 	else if (type == _MEMSWAP)
4450 		thresholds = &memcg->memsw_thresholds;
4451 	else
4452 		BUG();
4453 
4454 	if (!thresholds->primary)
4455 		goto unlock;
4456 
4457 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4458 
4459 	/* Check if a threshold crossed before removing */
4460 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4461 
4462 	/* Calculate new number of threshold */
4463 	size = 0;
4464 	for (i = 0; i < thresholds->primary->size; i++) {
4465 		if (thresholds->primary->entries[i].eventfd != eventfd)
4466 			size++;
4467 	}
4468 
4469 	new = thresholds->spare;
4470 
4471 	/* Set thresholds array to NULL if we don't have thresholds */
4472 	if (!size) {
4473 		kfree(new);
4474 		new = NULL;
4475 		goto swap_buffers;
4476 	}
4477 
4478 	new->size = size;
4479 
4480 	/* Copy thresholds and find current threshold */
4481 	new->current_threshold = -1;
4482 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4483 		if (thresholds->primary->entries[i].eventfd == eventfd)
4484 			continue;
4485 
4486 		new->entries[j] = thresholds->primary->entries[i];
4487 		if (new->entries[j].threshold <= usage) {
4488 			/*
4489 			 * new->current_threshold will not be used
4490 			 * until rcu_assign_pointer(), so it's safe to increment
4491 			 * it here.
4492 			 */
4493 			++new->current_threshold;
4494 		}
4495 		j++;
4496 	}
4497 
4498 swap_buffers:
4499 	/* Swap primary and spare array */
4500 	thresholds->spare = thresholds->primary;
4501 	/* If all events are unregistered, free the spare array */
4502 	if (!new) {
4503 		kfree(thresholds->spare);
4504 		thresholds->spare = NULL;
4505 	}
4506 
4507 	rcu_assign_pointer(thresholds->primary, new);
4508 
4509 	/* To be sure that nobody uses thresholds */
4510 	synchronize_rcu();
4511 unlock:
4512 	mutex_unlock(&memcg->thresholds_lock);
4513 }
4514 
4515 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4516 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4517 {
4518 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4519 	struct mem_cgroup_eventfd_list *event;
4520 	int type = MEMFILE_TYPE(cft->private);
4521 
4522 	BUG_ON(type != _OOM_TYPE);
4523 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4524 	if (!event)
4525 		return -ENOMEM;
4526 
4527 	spin_lock(&memcg_oom_lock);
4528 
4529 	event->eventfd = eventfd;
4530 	list_add(&event->list, &memcg->oom_notify);
4531 
4532 	/* already in OOM ? */
4533 	if (atomic_read(&memcg->under_oom))
4534 		eventfd_signal(eventfd, 1);
4535 	spin_unlock(&memcg_oom_lock);
4536 
4537 	return 0;
4538 }
4539 
4540 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4541 	struct cftype *cft, struct eventfd_ctx *eventfd)
4542 {
4543 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4544 	struct mem_cgroup_eventfd_list *ev, *tmp;
4545 	int type = MEMFILE_TYPE(cft->private);
4546 
4547 	BUG_ON(type != _OOM_TYPE);
4548 
4549 	spin_lock(&memcg_oom_lock);
4550 
4551 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4552 		if (ev->eventfd == eventfd) {
4553 			list_del(&ev->list);
4554 			kfree(ev);
4555 		}
4556 	}
4557 
4558 	spin_unlock(&memcg_oom_lock);
4559 }
4560 
4561 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4562 	struct cftype *cft,  struct cgroup_map_cb *cb)
4563 {
4564 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4565 
4566 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4567 
4568 	if (atomic_read(&memcg->under_oom))
4569 		cb->fill(cb, "under_oom", 1);
4570 	else
4571 		cb->fill(cb, "under_oom", 0);
4572 	return 0;
4573 }
4574 
4575 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4576 	struct cftype *cft, u64 val)
4577 {
4578 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4579 	struct mem_cgroup *parent;
4580 
4581 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4582 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4583 		return -EINVAL;
4584 
4585 	parent = mem_cgroup_from_cont(cgrp->parent);
4586 
4587 	cgroup_lock();
4588 	/* oom-kill-disable is a flag for subhierarchy. */
4589 	if ((parent->use_hierarchy) ||
4590 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4591 		cgroup_unlock();
4592 		return -EINVAL;
4593 	}
4594 	memcg->oom_kill_disable = val;
4595 	if (!val)
4596 		memcg_oom_recover(memcg);
4597 	cgroup_unlock();
4598 	return 0;
4599 }
4600 
4601 #ifdef CONFIG_MEMCG_KMEM
4602 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4603 {
4604 	return mem_cgroup_sockets_init(memcg, ss);
4605 };
4606 
4607 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4608 {
4609 	mem_cgroup_sockets_destroy(memcg);
4610 }
4611 #else
4612 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4613 {
4614 	return 0;
4615 }
4616 
4617 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4618 {
4619 }
4620 #endif
4621 
4622 static struct cftype mem_cgroup_files[] = {
4623 	{
4624 		.name = "usage_in_bytes",
4625 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4626 		.read = mem_cgroup_read,
4627 		.register_event = mem_cgroup_usage_register_event,
4628 		.unregister_event = mem_cgroup_usage_unregister_event,
4629 	},
4630 	{
4631 		.name = "max_usage_in_bytes",
4632 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4633 		.trigger = mem_cgroup_reset,
4634 		.read = mem_cgroup_read,
4635 	},
4636 	{
4637 		.name = "limit_in_bytes",
4638 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4639 		.write_string = mem_cgroup_write,
4640 		.read = mem_cgroup_read,
4641 	},
4642 	{
4643 		.name = "soft_limit_in_bytes",
4644 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4645 		.write_string = mem_cgroup_write,
4646 		.read = mem_cgroup_read,
4647 	},
4648 	{
4649 		.name = "failcnt",
4650 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4651 		.trigger = mem_cgroup_reset,
4652 		.read = mem_cgroup_read,
4653 	},
4654 	{
4655 		.name = "stat",
4656 		.read_seq_string = memcg_stat_show,
4657 	},
4658 	{
4659 		.name = "force_empty",
4660 		.trigger = mem_cgroup_force_empty_write,
4661 	},
4662 	{
4663 		.name = "use_hierarchy",
4664 		.write_u64 = mem_cgroup_hierarchy_write,
4665 		.read_u64 = mem_cgroup_hierarchy_read,
4666 	},
4667 	{
4668 		.name = "swappiness",
4669 		.read_u64 = mem_cgroup_swappiness_read,
4670 		.write_u64 = mem_cgroup_swappiness_write,
4671 	},
4672 	{
4673 		.name = "move_charge_at_immigrate",
4674 		.read_u64 = mem_cgroup_move_charge_read,
4675 		.write_u64 = mem_cgroup_move_charge_write,
4676 	},
4677 	{
4678 		.name = "oom_control",
4679 		.read_map = mem_cgroup_oom_control_read,
4680 		.write_u64 = mem_cgroup_oom_control_write,
4681 		.register_event = mem_cgroup_oom_register_event,
4682 		.unregister_event = mem_cgroup_oom_unregister_event,
4683 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4684 	},
4685 #ifdef CONFIG_NUMA
4686 	{
4687 		.name = "numa_stat",
4688 		.read_seq_string = memcg_numa_stat_show,
4689 	},
4690 #endif
4691 #ifdef CONFIG_MEMCG_SWAP
4692 	{
4693 		.name = "memsw.usage_in_bytes",
4694 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4695 		.read = mem_cgroup_read,
4696 		.register_event = mem_cgroup_usage_register_event,
4697 		.unregister_event = mem_cgroup_usage_unregister_event,
4698 	},
4699 	{
4700 		.name = "memsw.max_usage_in_bytes",
4701 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4702 		.trigger = mem_cgroup_reset,
4703 		.read = mem_cgroup_read,
4704 	},
4705 	{
4706 		.name = "memsw.limit_in_bytes",
4707 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4708 		.write_string = mem_cgroup_write,
4709 		.read = mem_cgroup_read,
4710 	},
4711 	{
4712 		.name = "memsw.failcnt",
4713 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4714 		.trigger = mem_cgroup_reset,
4715 		.read = mem_cgroup_read,
4716 	},
4717 #endif
4718 	{ },	/* terminate */
4719 };
4720 
4721 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4722 {
4723 	struct mem_cgroup_per_node *pn;
4724 	struct mem_cgroup_per_zone *mz;
4725 	int zone, tmp = node;
4726 	/*
4727 	 * This routine is called against possible nodes.
4728 	 * But it's BUG to call kmalloc() against offline node.
4729 	 *
4730 	 * TODO: this routine can waste much memory for nodes which will
4731 	 *       never be onlined. It's better to use memory hotplug callback
4732 	 *       function.
4733 	 */
4734 	if (!node_state(node, N_NORMAL_MEMORY))
4735 		tmp = -1;
4736 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4737 	if (!pn)
4738 		return 1;
4739 
4740 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4741 		mz = &pn->zoneinfo[zone];
4742 		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4743 		mz->usage_in_excess = 0;
4744 		mz->on_tree = false;
4745 		mz->memcg = memcg;
4746 	}
4747 	memcg->info.nodeinfo[node] = pn;
4748 	return 0;
4749 }
4750 
4751 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4752 {
4753 	kfree(memcg->info.nodeinfo[node]);
4754 }
4755 
4756 static struct mem_cgroup *mem_cgroup_alloc(void)
4757 {
4758 	struct mem_cgroup *memcg;
4759 	int size = sizeof(struct mem_cgroup);
4760 
4761 	/* Can be very big if MAX_NUMNODES is very big */
4762 	if (size < PAGE_SIZE)
4763 		memcg = kzalloc(size, GFP_KERNEL);
4764 	else
4765 		memcg = vzalloc(size);
4766 
4767 	if (!memcg)
4768 		return NULL;
4769 
4770 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4771 	if (!memcg->stat)
4772 		goto out_free;
4773 	spin_lock_init(&memcg->pcp_counter_lock);
4774 	return memcg;
4775 
4776 out_free:
4777 	if (size < PAGE_SIZE)
4778 		kfree(memcg);
4779 	else
4780 		vfree(memcg);
4781 	return NULL;
4782 }
4783 
4784 /*
4785  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4786  * but in process context.  The work_freeing structure is overlaid
4787  * on the rcu_freeing structure, which itself is overlaid on memsw.
4788  */
4789 static void free_work(struct work_struct *work)
4790 {
4791 	struct mem_cgroup *memcg;
4792 	int size = sizeof(struct mem_cgroup);
4793 
4794 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4795 	/*
4796 	 * We need to make sure that (at least for now), the jump label
4797 	 * destruction code runs outside of the cgroup lock. This is because
4798 	 * get_online_cpus(), which is called from the static_branch update,
4799 	 * can't be called inside the cgroup_lock. cpusets are the ones
4800 	 * enforcing this dependency, so if they ever change, we might as well.
4801 	 *
4802 	 * schedule_work() will guarantee this happens. Be careful if you need
4803 	 * to move this code around, and make sure it is outside
4804 	 * the cgroup_lock.
4805 	 */
4806 	disarm_sock_keys(memcg);
4807 	if (size < PAGE_SIZE)
4808 		kfree(memcg);
4809 	else
4810 		vfree(memcg);
4811 }
4812 
4813 static void free_rcu(struct rcu_head *rcu_head)
4814 {
4815 	struct mem_cgroup *memcg;
4816 
4817 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4818 	INIT_WORK(&memcg->work_freeing, free_work);
4819 	schedule_work(&memcg->work_freeing);
4820 }
4821 
4822 /*
4823  * At destroying mem_cgroup, references from swap_cgroup can remain.
4824  * (scanning all at force_empty is too costly...)
4825  *
4826  * Instead of clearing all references at force_empty, we remember
4827  * the number of reference from swap_cgroup and free mem_cgroup when
4828  * it goes down to 0.
4829  *
4830  * Removal of cgroup itself succeeds regardless of refs from swap.
4831  */
4832 
4833 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4834 {
4835 	int node;
4836 
4837 	mem_cgroup_remove_from_trees(memcg);
4838 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4839 
4840 	for_each_node(node)
4841 		free_mem_cgroup_per_zone_info(memcg, node);
4842 
4843 	free_percpu(memcg->stat);
4844 	call_rcu(&memcg->rcu_freeing, free_rcu);
4845 }
4846 
4847 static void mem_cgroup_get(struct mem_cgroup *memcg)
4848 {
4849 	atomic_inc(&memcg->refcnt);
4850 }
4851 
4852 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4853 {
4854 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4855 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4856 		__mem_cgroup_free(memcg);
4857 		if (parent)
4858 			mem_cgroup_put(parent);
4859 	}
4860 }
4861 
4862 static void mem_cgroup_put(struct mem_cgroup *memcg)
4863 {
4864 	__mem_cgroup_put(memcg, 1);
4865 }
4866 
4867 /*
4868  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4869  */
4870 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4871 {
4872 	if (!memcg->res.parent)
4873 		return NULL;
4874 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4875 }
4876 EXPORT_SYMBOL(parent_mem_cgroup);
4877 
4878 #ifdef CONFIG_MEMCG_SWAP
4879 static void __init enable_swap_cgroup(void)
4880 {
4881 	if (!mem_cgroup_disabled() && really_do_swap_account)
4882 		do_swap_account = 1;
4883 }
4884 #else
4885 static void __init enable_swap_cgroup(void)
4886 {
4887 }
4888 #endif
4889 
4890 static int mem_cgroup_soft_limit_tree_init(void)
4891 {
4892 	struct mem_cgroup_tree_per_node *rtpn;
4893 	struct mem_cgroup_tree_per_zone *rtpz;
4894 	int tmp, node, zone;
4895 
4896 	for_each_node(node) {
4897 		tmp = node;
4898 		if (!node_state(node, N_NORMAL_MEMORY))
4899 			tmp = -1;
4900 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4901 		if (!rtpn)
4902 			goto err_cleanup;
4903 
4904 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4905 
4906 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4907 			rtpz = &rtpn->rb_tree_per_zone[zone];
4908 			rtpz->rb_root = RB_ROOT;
4909 			spin_lock_init(&rtpz->lock);
4910 		}
4911 	}
4912 	return 0;
4913 
4914 err_cleanup:
4915 	for_each_node(node) {
4916 		if (!soft_limit_tree.rb_tree_per_node[node])
4917 			break;
4918 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4919 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4920 	}
4921 	return 1;
4922 
4923 }
4924 
4925 static struct cgroup_subsys_state * __ref
4926 mem_cgroup_create(struct cgroup *cont)
4927 {
4928 	struct mem_cgroup *memcg, *parent;
4929 	long error = -ENOMEM;
4930 	int node;
4931 
4932 	memcg = mem_cgroup_alloc();
4933 	if (!memcg)
4934 		return ERR_PTR(error);
4935 
4936 	for_each_node(node)
4937 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4938 			goto free_out;
4939 
4940 	/* root ? */
4941 	if (cont->parent == NULL) {
4942 		int cpu;
4943 		enable_swap_cgroup();
4944 		parent = NULL;
4945 		if (mem_cgroup_soft_limit_tree_init())
4946 			goto free_out;
4947 		root_mem_cgroup = memcg;
4948 		for_each_possible_cpu(cpu) {
4949 			struct memcg_stock_pcp *stock =
4950 						&per_cpu(memcg_stock, cpu);
4951 			INIT_WORK(&stock->work, drain_local_stock);
4952 		}
4953 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4954 	} else {
4955 		parent = mem_cgroup_from_cont(cont->parent);
4956 		memcg->use_hierarchy = parent->use_hierarchy;
4957 		memcg->oom_kill_disable = parent->oom_kill_disable;
4958 	}
4959 
4960 	if (parent && parent->use_hierarchy) {
4961 		res_counter_init(&memcg->res, &parent->res);
4962 		res_counter_init(&memcg->memsw, &parent->memsw);
4963 		/*
4964 		 * We increment refcnt of the parent to ensure that we can
4965 		 * safely access it on res_counter_charge/uncharge.
4966 		 * This refcnt will be decremented when freeing this
4967 		 * mem_cgroup(see mem_cgroup_put).
4968 		 */
4969 		mem_cgroup_get(parent);
4970 	} else {
4971 		res_counter_init(&memcg->res, NULL);
4972 		res_counter_init(&memcg->memsw, NULL);
4973 	}
4974 	memcg->last_scanned_node = MAX_NUMNODES;
4975 	INIT_LIST_HEAD(&memcg->oom_notify);
4976 
4977 	if (parent)
4978 		memcg->swappiness = mem_cgroup_swappiness(parent);
4979 	atomic_set(&memcg->refcnt, 1);
4980 	memcg->move_charge_at_immigrate = 0;
4981 	mutex_init(&memcg->thresholds_lock);
4982 	spin_lock_init(&memcg->move_lock);
4983 
4984 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4985 	if (error) {
4986 		/*
4987 		 * We call put now because our (and parent's) refcnts
4988 		 * are already in place. mem_cgroup_put() will internally
4989 		 * call __mem_cgroup_free, so return directly
4990 		 */
4991 		mem_cgroup_put(memcg);
4992 		return ERR_PTR(error);
4993 	}
4994 	return &memcg->css;
4995 free_out:
4996 	__mem_cgroup_free(memcg);
4997 	return ERR_PTR(error);
4998 }
4999 
5000 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5001 {
5002 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5003 
5004 	return mem_cgroup_force_empty(memcg, false);
5005 }
5006 
5007 static void mem_cgroup_destroy(struct cgroup *cont)
5008 {
5009 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5010 
5011 	kmem_cgroup_destroy(memcg);
5012 
5013 	mem_cgroup_put(memcg);
5014 }
5015 
5016 #ifdef CONFIG_MMU
5017 /* Handlers for move charge at task migration. */
5018 #define PRECHARGE_COUNT_AT_ONCE	256
5019 static int mem_cgroup_do_precharge(unsigned long count)
5020 {
5021 	int ret = 0;
5022 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5023 	struct mem_cgroup *memcg = mc.to;
5024 
5025 	if (mem_cgroup_is_root(memcg)) {
5026 		mc.precharge += count;
5027 		/* we don't need css_get for root */
5028 		return ret;
5029 	}
5030 	/* try to charge at once */
5031 	if (count > 1) {
5032 		struct res_counter *dummy;
5033 		/*
5034 		 * "memcg" cannot be under rmdir() because we've already checked
5035 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5036 		 * are still under the same cgroup_mutex. So we can postpone
5037 		 * css_get().
5038 		 */
5039 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5040 			goto one_by_one;
5041 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5042 						PAGE_SIZE * count, &dummy)) {
5043 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5044 			goto one_by_one;
5045 		}
5046 		mc.precharge += count;
5047 		return ret;
5048 	}
5049 one_by_one:
5050 	/* fall back to one by one charge */
5051 	while (count--) {
5052 		if (signal_pending(current)) {
5053 			ret = -EINTR;
5054 			break;
5055 		}
5056 		if (!batch_count--) {
5057 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5058 			cond_resched();
5059 		}
5060 		ret = __mem_cgroup_try_charge(NULL,
5061 					GFP_KERNEL, 1, &memcg, false);
5062 		if (ret)
5063 			/* mem_cgroup_clear_mc() will do uncharge later */
5064 			return ret;
5065 		mc.precharge++;
5066 	}
5067 	return ret;
5068 }
5069 
5070 /**
5071  * get_mctgt_type - get target type of moving charge
5072  * @vma: the vma the pte to be checked belongs
5073  * @addr: the address corresponding to the pte to be checked
5074  * @ptent: the pte to be checked
5075  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5076  *
5077  * Returns
5078  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5079  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5080  *     move charge. if @target is not NULL, the page is stored in target->page
5081  *     with extra refcnt got(Callers should handle it).
5082  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5083  *     target for charge migration. if @target is not NULL, the entry is stored
5084  *     in target->ent.
5085  *
5086  * Called with pte lock held.
5087  */
5088 union mc_target {
5089 	struct page	*page;
5090 	swp_entry_t	ent;
5091 };
5092 
5093 enum mc_target_type {
5094 	MC_TARGET_NONE = 0,
5095 	MC_TARGET_PAGE,
5096 	MC_TARGET_SWAP,
5097 };
5098 
5099 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5100 						unsigned long addr, pte_t ptent)
5101 {
5102 	struct page *page = vm_normal_page(vma, addr, ptent);
5103 
5104 	if (!page || !page_mapped(page))
5105 		return NULL;
5106 	if (PageAnon(page)) {
5107 		/* we don't move shared anon */
5108 		if (!move_anon())
5109 			return NULL;
5110 	} else if (!move_file())
5111 		/* we ignore mapcount for file pages */
5112 		return NULL;
5113 	if (!get_page_unless_zero(page))
5114 		return NULL;
5115 
5116 	return page;
5117 }
5118 
5119 #ifdef CONFIG_SWAP
5120 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5121 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5122 {
5123 	struct page *page = NULL;
5124 	swp_entry_t ent = pte_to_swp_entry(ptent);
5125 
5126 	if (!move_anon() || non_swap_entry(ent))
5127 		return NULL;
5128 	/*
5129 	 * Because lookup_swap_cache() updates some statistics counter,
5130 	 * we call find_get_page() with swapper_space directly.
5131 	 */
5132 	page = find_get_page(&swapper_space, ent.val);
5133 	if (do_swap_account)
5134 		entry->val = ent.val;
5135 
5136 	return page;
5137 }
5138 #else
5139 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5140 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5141 {
5142 	return NULL;
5143 }
5144 #endif
5145 
5146 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5147 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5148 {
5149 	struct page *page = NULL;
5150 	struct address_space *mapping;
5151 	pgoff_t pgoff;
5152 
5153 	if (!vma->vm_file) /* anonymous vma */
5154 		return NULL;
5155 	if (!move_file())
5156 		return NULL;
5157 
5158 	mapping = vma->vm_file->f_mapping;
5159 	if (pte_none(ptent))
5160 		pgoff = linear_page_index(vma, addr);
5161 	else /* pte_file(ptent) is true */
5162 		pgoff = pte_to_pgoff(ptent);
5163 
5164 	/* page is moved even if it's not RSS of this task(page-faulted). */
5165 	page = find_get_page(mapping, pgoff);
5166 
5167 #ifdef CONFIG_SWAP
5168 	/* shmem/tmpfs may report page out on swap: account for that too. */
5169 	if (radix_tree_exceptional_entry(page)) {
5170 		swp_entry_t swap = radix_to_swp_entry(page);
5171 		if (do_swap_account)
5172 			*entry = swap;
5173 		page = find_get_page(&swapper_space, swap.val);
5174 	}
5175 #endif
5176 	return page;
5177 }
5178 
5179 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5180 		unsigned long addr, pte_t ptent, union mc_target *target)
5181 {
5182 	struct page *page = NULL;
5183 	struct page_cgroup *pc;
5184 	enum mc_target_type ret = MC_TARGET_NONE;
5185 	swp_entry_t ent = { .val = 0 };
5186 
5187 	if (pte_present(ptent))
5188 		page = mc_handle_present_pte(vma, addr, ptent);
5189 	else if (is_swap_pte(ptent))
5190 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5191 	else if (pte_none(ptent) || pte_file(ptent))
5192 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5193 
5194 	if (!page && !ent.val)
5195 		return ret;
5196 	if (page) {
5197 		pc = lookup_page_cgroup(page);
5198 		/*
5199 		 * Do only loose check w/o page_cgroup lock.
5200 		 * mem_cgroup_move_account() checks the pc is valid or not under
5201 		 * the lock.
5202 		 */
5203 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5204 			ret = MC_TARGET_PAGE;
5205 			if (target)
5206 				target->page = page;
5207 		}
5208 		if (!ret || !target)
5209 			put_page(page);
5210 	}
5211 	/* There is a swap entry and a page doesn't exist or isn't charged */
5212 	if (ent.val && !ret &&
5213 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5214 		ret = MC_TARGET_SWAP;
5215 		if (target)
5216 			target->ent = ent;
5217 	}
5218 	return ret;
5219 }
5220 
5221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5222 /*
5223  * We don't consider swapping or file mapped pages because THP does not
5224  * support them for now.
5225  * Caller should make sure that pmd_trans_huge(pmd) is true.
5226  */
5227 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5228 		unsigned long addr, pmd_t pmd, union mc_target *target)
5229 {
5230 	struct page *page = NULL;
5231 	struct page_cgroup *pc;
5232 	enum mc_target_type ret = MC_TARGET_NONE;
5233 
5234 	page = pmd_page(pmd);
5235 	VM_BUG_ON(!page || !PageHead(page));
5236 	if (!move_anon())
5237 		return ret;
5238 	pc = lookup_page_cgroup(page);
5239 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5240 		ret = MC_TARGET_PAGE;
5241 		if (target) {
5242 			get_page(page);
5243 			target->page = page;
5244 		}
5245 	}
5246 	return ret;
5247 }
5248 #else
5249 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5250 		unsigned long addr, pmd_t pmd, union mc_target *target)
5251 {
5252 	return MC_TARGET_NONE;
5253 }
5254 #endif
5255 
5256 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5257 					unsigned long addr, unsigned long end,
5258 					struct mm_walk *walk)
5259 {
5260 	struct vm_area_struct *vma = walk->private;
5261 	pte_t *pte;
5262 	spinlock_t *ptl;
5263 
5264 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5265 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5266 			mc.precharge += HPAGE_PMD_NR;
5267 		spin_unlock(&vma->vm_mm->page_table_lock);
5268 		return 0;
5269 	}
5270 
5271 	if (pmd_trans_unstable(pmd))
5272 		return 0;
5273 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5274 	for (; addr != end; pte++, addr += PAGE_SIZE)
5275 		if (get_mctgt_type(vma, addr, *pte, NULL))
5276 			mc.precharge++;	/* increment precharge temporarily */
5277 	pte_unmap_unlock(pte - 1, ptl);
5278 	cond_resched();
5279 
5280 	return 0;
5281 }
5282 
5283 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5284 {
5285 	unsigned long precharge;
5286 	struct vm_area_struct *vma;
5287 
5288 	down_read(&mm->mmap_sem);
5289 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5290 		struct mm_walk mem_cgroup_count_precharge_walk = {
5291 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5292 			.mm = mm,
5293 			.private = vma,
5294 		};
5295 		if (is_vm_hugetlb_page(vma))
5296 			continue;
5297 		walk_page_range(vma->vm_start, vma->vm_end,
5298 					&mem_cgroup_count_precharge_walk);
5299 	}
5300 	up_read(&mm->mmap_sem);
5301 
5302 	precharge = mc.precharge;
5303 	mc.precharge = 0;
5304 
5305 	return precharge;
5306 }
5307 
5308 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5309 {
5310 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5311 
5312 	VM_BUG_ON(mc.moving_task);
5313 	mc.moving_task = current;
5314 	return mem_cgroup_do_precharge(precharge);
5315 }
5316 
5317 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5318 static void __mem_cgroup_clear_mc(void)
5319 {
5320 	struct mem_cgroup *from = mc.from;
5321 	struct mem_cgroup *to = mc.to;
5322 
5323 	/* we must uncharge all the leftover precharges from mc.to */
5324 	if (mc.precharge) {
5325 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5326 		mc.precharge = 0;
5327 	}
5328 	/*
5329 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5330 	 * we must uncharge here.
5331 	 */
5332 	if (mc.moved_charge) {
5333 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5334 		mc.moved_charge = 0;
5335 	}
5336 	/* we must fixup refcnts and charges */
5337 	if (mc.moved_swap) {
5338 		/* uncharge swap account from the old cgroup */
5339 		if (!mem_cgroup_is_root(mc.from))
5340 			res_counter_uncharge(&mc.from->memsw,
5341 						PAGE_SIZE * mc.moved_swap);
5342 		__mem_cgroup_put(mc.from, mc.moved_swap);
5343 
5344 		if (!mem_cgroup_is_root(mc.to)) {
5345 			/*
5346 			 * we charged both to->res and to->memsw, so we should
5347 			 * uncharge to->res.
5348 			 */
5349 			res_counter_uncharge(&mc.to->res,
5350 						PAGE_SIZE * mc.moved_swap);
5351 		}
5352 		/* we've already done mem_cgroup_get(mc.to) */
5353 		mc.moved_swap = 0;
5354 	}
5355 	memcg_oom_recover(from);
5356 	memcg_oom_recover(to);
5357 	wake_up_all(&mc.waitq);
5358 }
5359 
5360 static void mem_cgroup_clear_mc(void)
5361 {
5362 	struct mem_cgroup *from = mc.from;
5363 
5364 	/*
5365 	 * we must clear moving_task before waking up waiters at the end of
5366 	 * task migration.
5367 	 */
5368 	mc.moving_task = NULL;
5369 	__mem_cgroup_clear_mc();
5370 	spin_lock(&mc.lock);
5371 	mc.from = NULL;
5372 	mc.to = NULL;
5373 	spin_unlock(&mc.lock);
5374 	mem_cgroup_end_move(from);
5375 }
5376 
5377 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5378 				 struct cgroup_taskset *tset)
5379 {
5380 	struct task_struct *p = cgroup_taskset_first(tset);
5381 	int ret = 0;
5382 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5383 
5384 	if (memcg->move_charge_at_immigrate) {
5385 		struct mm_struct *mm;
5386 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5387 
5388 		VM_BUG_ON(from == memcg);
5389 
5390 		mm = get_task_mm(p);
5391 		if (!mm)
5392 			return 0;
5393 		/* We move charges only when we move a owner of the mm */
5394 		if (mm->owner == p) {
5395 			VM_BUG_ON(mc.from);
5396 			VM_BUG_ON(mc.to);
5397 			VM_BUG_ON(mc.precharge);
5398 			VM_BUG_ON(mc.moved_charge);
5399 			VM_BUG_ON(mc.moved_swap);
5400 			mem_cgroup_start_move(from);
5401 			spin_lock(&mc.lock);
5402 			mc.from = from;
5403 			mc.to = memcg;
5404 			spin_unlock(&mc.lock);
5405 			/* We set mc.moving_task later */
5406 
5407 			ret = mem_cgroup_precharge_mc(mm);
5408 			if (ret)
5409 				mem_cgroup_clear_mc();
5410 		}
5411 		mmput(mm);
5412 	}
5413 	return ret;
5414 }
5415 
5416 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5417 				     struct cgroup_taskset *tset)
5418 {
5419 	mem_cgroup_clear_mc();
5420 }
5421 
5422 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5423 				unsigned long addr, unsigned long end,
5424 				struct mm_walk *walk)
5425 {
5426 	int ret = 0;
5427 	struct vm_area_struct *vma = walk->private;
5428 	pte_t *pte;
5429 	spinlock_t *ptl;
5430 	enum mc_target_type target_type;
5431 	union mc_target target;
5432 	struct page *page;
5433 	struct page_cgroup *pc;
5434 
5435 	/*
5436 	 * We don't take compound_lock() here but no race with splitting thp
5437 	 * happens because:
5438 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5439 	 *    under splitting, which means there's no concurrent thp split,
5440 	 *  - if another thread runs into split_huge_page() just after we
5441 	 *    entered this if-block, the thread must wait for page table lock
5442 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5443 	 *    part of thp split is not executed yet.
5444 	 */
5445 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5446 		if (mc.precharge < HPAGE_PMD_NR) {
5447 			spin_unlock(&vma->vm_mm->page_table_lock);
5448 			return 0;
5449 		}
5450 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5451 		if (target_type == MC_TARGET_PAGE) {
5452 			page = target.page;
5453 			if (!isolate_lru_page(page)) {
5454 				pc = lookup_page_cgroup(page);
5455 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5456 							pc, mc.from, mc.to)) {
5457 					mc.precharge -= HPAGE_PMD_NR;
5458 					mc.moved_charge += HPAGE_PMD_NR;
5459 				}
5460 				putback_lru_page(page);
5461 			}
5462 			put_page(page);
5463 		}
5464 		spin_unlock(&vma->vm_mm->page_table_lock);
5465 		return 0;
5466 	}
5467 
5468 	if (pmd_trans_unstable(pmd))
5469 		return 0;
5470 retry:
5471 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5472 	for (; addr != end; addr += PAGE_SIZE) {
5473 		pte_t ptent = *(pte++);
5474 		swp_entry_t ent;
5475 
5476 		if (!mc.precharge)
5477 			break;
5478 
5479 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5480 		case MC_TARGET_PAGE:
5481 			page = target.page;
5482 			if (isolate_lru_page(page))
5483 				goto put;
5484 			pc = lookup_page_cgroup(page);
5485 			if (!mem_cgroup_move_account(page, 1, pc,
5486 						     mc.from, mc.to)) {
5487 				mc.precharge--;
5488 				/* we uncharge from mc.from later. */
5489 				mc.moved_charge++;
5490 			}
5491 			putback_lru_page(page);
5492 put:			/* get_mctgt_type() gets the page */
5493 			put_page(page);
5494 			break;
5495 		case MC_TARGET_SWAP:
5496 			ent = target.ent;
5497 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5498 				mc.precharge--;
5499 				/* we fixup refcnts and charges later. */
5500 				mc.moved_swap++;
5501 			}
5502 			break;
5503 		default:
5504 			break;
5505 		}
5506 	}
5507 	pte_unmap_unlock(pte - 1, ptl);
5508 	cond_resched();
5509 
5510 	if (addr != end) {
5511 		/*
5512 		 * We have consumed all precharges we got in can_attach().
5513 		 * We try charge one by one, but don't do any additional
5514 		 * charges to mc.to if we have failed in charge once in attach()
5515 		 * phase.
5516 		 */
5517 		ret = mem_cgroup_do_precharge(1);
5518 		if (!ret)
5519 			goto retry;
5520 	}
5521 
5522 	return ret;
5523 }
5524 
5525 static void mem_cgroup_move_charge(struct mm_struct *mm)
5526 {
5527 	struct vm_area_struct *vma;
5528 
5529 	lru_add_drain_all();
5530 retry:
5531 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5532 		/*
5533 		 * Someone who are holding the mmap_sem might be waiting in
5534 		 * waitq. So we cancel all extra charges, wake up all waiters,
5535 		 * and retry. Because we cancel precharges, we might not be able
5536 		 * to move enough charges, but moving charge is a best-effort
5537 		 * feature anyway, so it wouldn't be a big problem.
5538 		 */
5539 		__mem_cgroup_clear_mc();
5540 		cond_resched();
5541 		goto retry;
5542 	}
5543 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5544 		int ret;
5545 		struct mm_walk mem_cgroup_move_charge_walk = {
5546 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5547 			.mm = mm,
5548 			.private = vma,
5549 		};
5550 		if (is_vm_hugetlb_page(vma))
5551 			continue;
5552 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5553 						&mem_cgroup_move_charge_walk);
5554 		if (ret)
5555 			/*
5556 			 * means we have consumed all precharges and failed in
5557 			 * doing additional charge. Just abandon here.
5558 			 */
5559 			break;
5560 	}
5561 	up_read(&mm->mmap_sem);
5562 }
5563 
5564 static void mem_cgroup_move_task(struct cgroup *cont,
5565 				 struct cgroup_taskset *tset)
5566 {
5567 	struct task_struct *p = cgroup_taskset_first(tset);
5568 	struct mm_struct *mm = get_task_mm(p);
5569 
5570 	if (mm) {
5571 		if (mc.to)
5572 			mem_cgroup_move_charge(mm);
5573 		mmput(mm);
5574 	}
5575 	if (mc.to)
5576 		mem_cgroup_clear_mc();
5577 }
5578 #else	/* !CONFIG_MMU */
5579 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5580 				 struct cgroup_taskset *tset)
5581 {
5582 	return 0;
5583 }
5584 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5585 				     struct cgroup_taskset *tset)
5586 {
5587 }
5588 static void mem_cgroup_move_task(struct cgroup *cont,
5589 				 struct cgroup_taskset *tset)
5590 {
5591 }
5592 #endif
5593 
5594 struct cgroup_subsys mem_cgroup_subsys = {
5595 	.name = "memory",
5596 	.subsys_id = mem_cgroup_subsys_id,
5597 	.create = mem_cgroup_create,
5598 	.pre_destroy = mem_cgroup_pre_destroy,
5599 	.destroy = mem_cgroup_destroy,
5600 	.can_attach = mem_cgroup_can_attach,
5601 	.cancel_attach = mem_cgroup_cancel_attach,
5602 	.attach = mem_cgroup_move_task,
5603 	.base_cftypes = mem_cgroup_files,
5604 	.early_init = 0,
5605 	.use_id = 1,
5606 	.__DEPRECATED_clear_css_refs = true,
5607 };
5608 
5609 #ifdef CONFIG_MEMCG_SWAP
5610 static int __init enable_swap_account(char *s)
5611 {
5612 	/* consider enabled if no parameter or 1 is given */
5613 	if (!strcmp(s, "1"))
5614 		really_do_swap_account = 1;
5615 	else if (!strcmp(s, "0"))
5616 		really_do_swap_account = 0;
5617 	return 1;
5618 }
5619 __setup("swapaccount=", enable_swap_account);
5620 
5621 #endif
5622